
CBASIC® Compiler
Language

Reference Manual .

[Q]
DIGITAL

RESEARCH™

CBASIC® Compiler
Language

Reference Manual

COPYRIGHT

Copyright © 1981, 1982 by Digital Research. All rights reserved. No part of this
publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or
translated into any language. or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without the
prior written permission of Digital Research, Post Office Box 579, Pacific Grove,
California, 93950.

This manual is, however, tutorial in nature. Thus, the reader is granted permission
to include the example programs, either in whole or in part, in his own programs.

DISCLAIMER

Digital Research makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness
for any particular purpose. Further, Digital Research reserves the right to revise this
publication and to make changes from time to time in the content hereof without
obligation of Digital Research to notify any person of such revision or changes.

TRADEMARKS

CBASIC, CP/M, CP/M-86, and CP/NET are registered trademarks of Digital Re­
search. CB80, CB86, Concurrent CP/M-86, MP/M, MP/M II, and MP/M-86 are
trademarks of Digital Research. Intel is a registered trademark of Intel Corporation.
Zilog and Z80 are registered trademarks of Zilog, Inc.

The CBASIC Compiler Language Reference Manual was prepared using the Digital
Research TEX Text Formatter and printed in the United States of America.

First Edition: September 1981
Second Edition: March 1982
Third Edition: December 1982

Foreword

CBASIC® is a comprehensive and versatile programming language for developing
professional microcomputer software. Software developers worldwide have selected
CBASIC for its capacity to quickly produce reliable, maintainable programs in a struc­
tured programming environment. CBASIC combines the power of a structured, high­
level language with the simplicity of BASIC to provide a serious development tool that
is easy to learn and easy to use.

The CBASIC® Compiler is a compiler version of the CBASIC programming language.
The CBASIC Compiler is available for both 8-bit and 16-bit operating systems. Use
the CBASIC Compiler Language Reference Manual with either version .

• The 8-bit version, CB80™, runs under CP/M®, MP/M™, and CPINET® oper­
ating systems for microcomputers based on the Intel® 8080, 8085, or Zilog®
Z80® microprocessor .

• The 16-bit version, CB86™, runs under the CP/M-86®, MP/M-86™, or Con­
current CP/M-86™ operating systems for computers based on the Intel 8086,
8088 family of microprocessors.

The CBASIC Compiler Language Reference Manual is for readers familiar with
conventional BASIC terminology and programming concepts. The manual defines the
structure, statements, and functions of the CBASIC language in Sections 1 through 4.
Section 5 covers input and output, including the use of disk files. The CBASIC Compiler
(CB80) Language Programming Guide and the CBASIC Compiler (CB86) Language
Programming Guide provide in-depth discussions of the compiler, link editor, and
library file for the respective versions of the CBASIC Compiler.

Programs written in other versions of CBASIC maintain compatibility with the CBASIC
Compiler. You can convert existing CBASIC programs to the CBASIC Compiler with
few modifications. The result is much faster execution and additional flexibility using
assembly language routines. Appendix C explains the language enhancements made to
implement the CBASIC Compiler version.

Digital Research is interested in your comments on programs and documentation.
Please use the Software Performance Reports enclosed in each product package to help
us provide you with better software products.

iii

Table of Contents

1 Introduction to CBASIC Compiler

1.1 CBASIC Compiler Components 1
1.2 Program Structure .. 1

2 Identifiers, Numbers, and Expressions

2.1 Identifiers 5
2. 2 Declarations ... 6
2. 3 Strings .. 7
2. 4 Numbers .. 8
2.5 Variables and Array Variables 9
2.6 Expressions .. ~ . 11

3 Statements and Functions ... 15

4 Defining and Using Functions

4.1 Function Names .. 117
4.2 Function Definitions .. 118

4.2. 1 Single-line Functions 118
4.22 Multiple-line Functions 119

4.3 Function References ... 121
4.4 Public and External Functions 121

5 Input and Output

5.1 Console Input and Output 123
5.2 Printing ... 124
5.3 Formatted Printing ... 124

5.3.1 String Character Fields 126
5.3.2 Fixed-length String Fields 126
5.3.3 Variable-length String Fields 127
5.3.4 Numeric Data Fields 127
5.3.5 Escape Characters...................................... 130

5.4 File Input and Output 131
5.5 File Organization ... 132

5.5.1 Stream Files 132
5.5.2 Fixed Files .. 134

v

Table of Contents (continued)

Appendixes
A CBASIC Compiler Reserved Words 137

B Decimal-ASCII-Hex Table 139

C CBASIC to CBASIC Compiler Conversion Aid 141
C.l Subscripted Variable 141
C.2 FILE Statement ... 142
C.3 SAVEMEM .. 143
C.4 CHAIN Statement 143
C.5 String Lengths .. 0 0 144
C.6 PEEK and POKE o. 0" • 0 0 0 o. 0.0. 0 0 •• 0 0.0000 •••• 0 •• 0 •• 0 • 0 144
C.7 FOR-NEXT Loops o. 0 0 0 0 0 0 0 • 0 •• 0 0 0 0 0 0 0 0 • 0 ••• 0 •• 0 •• 0 ••• 0 0 145
C.8 Console Width o. 0 0 0 • 0 ••• 0 0 0 0 •• 0 0 0 .000. 0 0 • 0 0 ••••• 0 0 0 0 • 0 0 145
Co9 FRE 000.0 ••• o. o. 0 0 00.0 •• 0 0 •••• 0.000 ••• 0.0000.0000000 •• 146
C.l0 READ and INPUT Statements for Integers ... 0 • 0 •• 0 0 •• 0 000 0 o. 146
C.ll Function and Variable Names . 0 ••• 0 0 • 0 •• 0 • 0 • 0 0 0 ••• 0 0 0 •• 0 •• 147
C.12 Labels 0 •• 0 0 0 0 ••• 0 •• 0 0 • 0 0 0 0 0 • 0 • 0 • 0 0 0 0 0 0 ••• 0 0 • 0 ••• 0 •• 0 o. 147
Co13 Warning Messages .. 0 0 0 0 0 0 •• 0 •••• 0 0 ••• 0 ••• 0 • 0 • 0 • 0 ••••• 0 o. 147
Co14 New Reserved Words .00000 •• 0 • 0 •• 0 •• 0 0 0 0 • 0 0 • 000 •• 00000 •• 148

D Glossary. 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 • 0 0 ••••• 0 0 0 •• 0 •• 0 •••• 0 ••• 0 •••••• 0 • •• 149

vi

Table of Contents (continued)

List of Tables

2-1. Hierarchy of Operators 11

3-1. Special Characters in Format Strings 83

5-1. Special Characters in Format Strings 125

List of Figures

5-1. Sequential File... 2
5-2. Relative File .. 134

vii

Section 1
Introduction to CBASIC Compiler

1.1 CBASIC Compiler Components

The CBASIC Compiler system has three main components: a compiler, a link editor,
and a library.

• The compiler translates CBASIC source code into relocatable machine code.
Source programs default to a .BAS filetype unless otherwise specified. The com­
piler generates .REL files.

• The link editor combines relocatable object modules into an executable core­
image file with optional overlays. The link editor generates executable files of
type .COM for the 8-bit microprocessor family, and type .CMD for the 16-bit
microprocessor family.

• The library provides relocatable modules that allocate memory, release memory,
determine available space, and perform arithmetic operations and input/output
processing.

1.2 Program Structure

CBASIC has features found in other high-level languages, such as structured control
statements, functions, complex expressions, labels, data declarations, and a variety of
data types. Other CBASIC features are parameter passing, local and global variables,
easy access to the operating system, and chaining between programs.

1

I

1.2 Program Structure CBASIC Compiler Reference Manual

CBASIC requires no line numbers and allows you to use commas, spaces, and tabs
freely to make your programs more readable. You must use a statement number or
label only when referencing a statement or module from another location in the pro­
gram. CBASIC allows literal identifiers, integers, decimal fractions, and exponential
numbers as labels, as in the following examples.

CALC. TOTAL: PRINT AX + BX + CX

1 PRINT IITHESE ARE VALID LINE NUMBERS II

0 INPUT IIENTER A NUMBER:II;N

100 GO TO 100.0

100.0 END

21.543 A$ = NAME$

7820E12 Y = 2.0 * X

Numeric statement labels do not have to be in order. The compiler treats the labels
as strings of characters, not as numeric quantities. For example, the two labels 100
and 100.0 are distinct CBASIC statement labels. Only the first thirty-one characters
are meaningful for distinguishing one label from another.

CBASIC statements can span more than one physical line. Use the backslash char­
acter, \, to continue a CBASIC statement on the next line. The compiler ignores any
character that follows a backslash on the same line, thus providing a method of program
documentation. The backslash does not work as a continuation character if used in a
string constant. The following example demonstrates the continuation character:

IF X = 3 THEN \
PRINT liTHE VALUES ARE EQUAL" \

ELSE \
GOSUB 1000

2

CBASIC Compiler Reference Manual 1.2 Program Structure

In most cases, you can write multiple statements on the same line. Use a colon, :,
to separate each command that appears on one line. However, the statements DIM,
IF, DATA, END, and declaration statements cannot appear on one line with other
statements. The following example demonstrates multiple statements on one line:

PRINT TAB(10) ;"X": READ #l;NAME$: GOTO 1000

Use comments or remarks freely to document your programs. The REM statement
allows unlimited program documentation. Use spaces freely to enhance readability of
your programs. Comments, long variable names, and blank spaces do not affect the
size of your compiled program.

End of Section 1

3

Section 2
Identifiers, Numbers, and

Expressions

CBASIC has three data types: integers, real numbers, and strings. CBASIC also
supports dynamic, multidimensional arrays of all three data types. Each data type has
a distinct form for identifiers. Numeric constants have several forms.

CBASIC has a large set of operators for building expressions with variables, con­
stants, and functions of the three data types. By converting from one type to another,
where necessary, CBASIC allows you to mix real and integer numbers in most expressions.

2.1 Identifiers

An identifier is a string of characters that names an element in a program. Identifiers
specify variable names and user-defined function names. An identifier can be any length.
Only the first thirty-one characters are meaningful for distinguishing one name from
another. The first character must be a letter or a question mark, the remaining characters
can be letters, numerals, or periods. The last character determines a default data type
for the individual identifier. Declarations can override the default data type (see Section
2.2).

• Identifiers ending with $ represent strings.
• Identifiers ending with % represent integers.
• Identifiers without a $ or % represent real numbers.

The compiler converts lower-case letters to upper-case unless you set toggle D.

5

2.1 Identifiers CBASIC Compiler Reference Manual

The following are examples of va~id CBAS,IC identifiers.

AI

NEW.SUM

file12.naMe$

Payroll.Identification.NuMber1.

2.2 Declarations

Declarations enable you to specify the data type for a group of variables or function
names. A declaration statement consists of a data type keyword followed by a space
and a list of identifiers delimited with commas. The data type keywords are INTEGER,
REAL, and STRING. The following are examples of valid declaration statements.

INTEGER I,J,LOOP.COUNT

REAL A, AMOUNT.DUE, C

STRING NAME, PART.DESCRIP

The three preceding examples, listed in a program, form a declaration group or
block. A declaration group can contain blank lines, REM statements, COMMON
statements, and DATA statements.

You can declare common variables with the COMMON statement allowing two or
more programs to share data. Refer to the Programming Guide for instructions on
chaining. The following COMMON statement declares three common variables.

COMMON X, VI, Z$

You can list the same variable in a declaration statement and a COMMON statement
as follows.

STRING X

COMMON X, V(l)

REAL V(l)

6

CBASIC Compiler Reference Manual 2.2 Declarations

You can place any number of COMMON statements in a declaration group. How­
ever, you cannot use COMMON statements in the declaration group of a multiple­
line function.

To use an array identifier in a declaration statement, place the number of subscripts
in parentheses after the array name, as shown in the following examples.

INTEGER COORDINATES(Z), Y(1)

COMMON NAMES$(l)

The COORDINATES array is a two-dimensional integer array. Y is a one-dimen­
sional integer array, and NAMES$ is a one-dimensional string array. For more infor­
mation about arrays, see the DIM statement in Section 3.

2.3 Strings

Strings can contain ASCII characters or binary data. Some editors can even place
control characters in strings. Delimit string constants with quotation marks. Zero or
more characters placed between a pair of quotation marks make up a single string
constant. A string constant must fit on a single physical line. A pair of adjacent quotation
marks represents a null string. A null string contains no characters. The backslash, \,
has no special meaning inside a string constant. You can embed quotation marks in a
string constant by using two quotes to represent one, as in the following example.

The string constant

IIIIIIHello,1I1I said Tom. 1I

stores internally as the string:

IIHello,1I said Tom.

String constants must fit on one physical line. This means that a string constant
cannot contain a carriage return, and cannot exceed 255 characters. String variables
are more flexible. Internally, a string can have from 0 to 32,767 characters. Each
character takes up one byte. The first two bytes in the string contain the length of the
string. To build long strings, use string expressions (described later in this section),
and string functions (described in Section 3).

7

2.3 Strings CBASIC Compiler Reference Manual

The following are examples of valid CBASIC string constants:

"July 4, 1776"

"Enter your naMe please:"

111111\1111 has no special Meanin~ inside a strin~."

1111 (represents the null string)

2.4 Numbers

CBASIC supports two types of numeric quantities: real and integer. You can write
a real constant in either fixed format or exponential notation. In both cases, the real
number contains from one to fourteen digits, a sign, and a decimal point. In exponential
notation, the exponent is of the form Esdd, where s, if present, is a valid sign, +, -,
or blank, and where dd is one or two valid digits. The sign is the exponent sign. Do
not confuse the exponent sign with the optional sign of the mantissa. The numbers
range from 1.0E-64 to 9.9999999999999E62. Although CBASIC maintains only four­
teen significant digits, you can include more digits in a real constant. Real constants
round down to fourteen significant digits. The following are examples of real numbers.

25.00

-4528.78

1.5E+3 (equals 1500.0)

1 • 5E - 3 (equals .0015)

CBASIC treats a constant as an integer if the constant does not contain an embedded
decimal point, is not in exponential notation, and ranges from -32,768 to +32,767.
The following are examples of integers.

1

-88

llE2

32767

8

CBASIC Compiler Reference Manual 2.4 Numbers

You can express integer constants as hexadecimal or binary constants. The letter H
terminates a hexadecimal constant. The letter B terminates a binary constant. The first
digit of a hexadecimal constant must be numeric. For example, 255 in hexadecimal is
OFFH, not FFH. FFH is a valid identifier. The following are additional examples of
hexadecimal and binary representations.

1abOH

010116

OFFFFH

101111106

Hexadecimal and binary constants cannot contain a decimal point. The value retained
is the sixteen least-significant bits of the number specified.

In this manual, the terms real number and floating-point number are interchangeable.
The term numeric applies to either a real or integer quantity.

2.5 Variables and Array Variables

A variable in CBASIC represents an integer, a real number, or a string, depending
on the type of the identifier.

Each variable always has a value associated with it. The value can change many
times during program execution. A string variable does not have a fixed length asso­
ciated with it. Rather, as different strings are assigned to the variable, the run-time
system allocates storage dynamically. The maximum length allowed in a string variable
is 32,767 characters. Numeric variables initialize to O. String variables initialize to a
null string.

A variable takes the general form:

identifier [(subscript list)]

9

2.5 Variables CBASIC Compiler Reference Manual

The following are examples of variables:

PAYMENT

day.of.deposit%

Array variables look like regular variables with an added subscript list. CBASIC
arrays can hold strings, integers, or reals. As with regular variables, the type of identifier
specifies the type of array. A subscript list specifies which element in the array to
reference. The number of subscripts allowed in a variable is implementation dependent.
See Appendix A of the Programming Guide for current values.

A subscript list takes the general form:

(subscript {,subscript})

The following examples show array variables:

y$(i:f. ,j:f. ,I\:f. ,1%)

COST(3,S)

POS%(XAXISZ,YAXISZ)

INCOME(AMT(CLIENT%) ,CURRENT.MONTH%)

The subscripts in a subscript list must be numeric expressions. Access to array
elements is more efficient if you use integer expressions. If the" expression is real, the
value rounds to the nearest integer. The subscript list indicates that the variable is an
array variable and indicates which element of the array to reference.

Before you reference an array variable in a program, dimension the array using the
DIM statement. The DIM statement specifies the upper-bound of each subscript and
allocates storage for the array. Section 3 describes the DIM statement.

You must dimension an array explicitly; no default options are available.

Use the subscript list to specify the number of dimensions and the extent of each
dimension for the array that you declare. The subscript list cannot contain a reference
to the array. All subscripts have an implied lower-bound of zero.

10

CBASIC Compiler Refere!1ce Manual 2.6 Expressions

2.6 Expressions

Expressions consist of algebraic combinations of function references, variables, con­
stants, and operators. Expressions evaluate to an integer, real, or string value. The
following are examples of expressions.

cost + overhead * percent

a*b/c(1.2+xyz)

last.nalTle$ + II, II + first.narTle$

index% + 1

Table 2-1. Hierarchy of Operators

Hierarchy Operator Definition

1 () balanced parentheses
2 " power operator

Arithmetic Operators

3 * , I multiply, divide
4 + , - plus, minus

Relational Operators

5 < LT (less than)
<= LE (less than/equal to)

) GT (greater than)
)= GE (greater than/equal to)
= EQ (equal to)

<) NE (not equal)

Logical Operators

6 NOT
7 AND
8 OR
9 XOR

11

2.6 Expressions CBASIC Compiler Reference Manual

Arithmetic and relational operations work with integers and real numbers. An integer
value converts to a real number if the operation combines a real and integer value.
The operation then uses the two real values, resulting in a real value. This is mixed­
mode arithmetic.

Mixed-mode operations require more time to execute because the compiler generates
more code. A mixed-mode expression always evaluates to a real value.

The power operator calculates the logarithm of the mantissa if the calculation uses
real values. A warning results when the number to the left of the operator is negative
because the logarithm of a negative number is undefined. The absolute value of the
negative number is used to calculate the result. The exponent can be positive or negative.

If both values used with the power operator are either integer constants or integer
variables, CBASIC calculates the result by successive multiplications. This allows you
to raise a negative integer number to an integer power. With integers, if the exponent
is negative, the result is zero. In all cases, 0 A 0 is 1, and 0 A X, where X is not equal
to 0, is O.

If the exponent is an integer but the base is real, the integer converts to a real value
before calculating the result. Likewise, if the exponent is real but the base is an integer
quantity, CBASIC calculates the result using real values.

Only the relational operators and +, the concatenation operator, work with string
variables. CBASIC does not support mixed string and numeric operations. The mne­
monic relational operators (LT, LE, etc.,) are interchangeable with the corresponding
algebraic operators «, < =, etc.). Relational operators result in integer values. A 0 is
false and a -1 is true.

Logical operators AND, NOT, OR, and XOR operate on integer values and result
in an integer number. The result is bitwise logical. If you use a real value with logical
operators, it first converts to an integer.

12

CBASIC Compiler Reference Manual 2.6 Expressions

If a numeric quantity exceeds the range from 32,767 to -32,768, you cannot represent
it with a 16-bit two's complement binary number. Logical operations on such a number
produce unpredictable results.

These are results of logical operations:

12 AND 3 =0 1100B AND 0101B =4

NOT-1 =0 NOT3H = -4

12 OR 3 = 15 OCH OR 5H = 13

12.4 XOR 3.2 = 15 12.4 XOR 3.7 =8

You can increase efficiency by using integer expressions instead of real expressions
for relational tests and logical operations.

If a series of digits contains no decimal point or ends in a decimal point, the compiler
attempts to store it as an integer. If the resulting number is in the range of CBASIC
integers, the compiler treats it as an integer. If the constant is then required in an
expression as a real number, the constant converts to a real number at run-time. For
example,

x = X + 1.

causes the integer constant 1 to convert to a real value before adding it to X. To
eliminate this extra conversion, embed the decimal in the number as shown:

X = X + 1.0

Actually, there is very little difference in execution speed. A similar situation exists
in the following statement:

Y"t. = X'x. + 1.0

In this case, the X% converts to a real number before adding it to the real constant.
The result then converts back to an integer prior to assignment to Y%.

13

2.6 Expressions CBASIC Compiler Reference Manual

Generally, you should avoid mixed-mode expressions whenever possible, and do not
use real constants with integer variables. CBASIC stores most whole numbers used in
a program as integers. This provides the most effective execution.

If an overflow occurs during an operation between real values, an execution error
occurs.

End of Section 2

14

Section 3
Statements and Functions

The syntax notation in this section uses the following typographical conventions to
highlight the various elements that make up each statement and function.

• CAPS designate CBASIC Compiler keywords.
• Lower-case letters indicate variables.
• Italics identify syntactic items, such as expressions.
• Items enclosed in square brackets [] are optional.
• Items enclosed in braces { } are optional and can be repeated.

All other punctuation, such as delimiters and parentheses, must be included. The
glossary in Appendix D contains general definitions of syntactic items such as expres­
sion, file specification, and label.

15

'

0:,

~,," -, '

. "/",

0'

ABS Function CBASIC Compiler Reference Manual

ABS Function

The ABS function returns the absolute value of a number.

Syntax:

x = ABS(numeric expression)

Explanation:

The ABS function returns a real number. Integer expressions convert to real numbers.

Examples:

X = ABSC1S0)

Y = ABSC-1S0)

IF ABSCTEMP.A-TEMP.B) < SAFE.LIMIT THEN CALL WARN.MSG

16

CBASIC Compiler Reference Manual ASC Function

ASC Function

The ASC function returns the ASCII decimal value of the first character in a string.

Syntax:

iO/o = ASC(string expression)

Explanation:

ASC returns an integer between 0 and 255. The string must contain at least one
character. An execution error occurs if the string expression evaluates to a null string.

Refer to Appendix B for a listing of ASCII symbols and corresponding numeric
values. The inverse function of ASC is CHR$.

Examples:

PRINT ASC(A$ + B$)

SEND% = ASC(LAST.NAME$)

IF ASC(DIGIT$) > 47 AND ASC(DIGIT$) < 58 \
THEN PRINT "l)ALID DIGITS"

17

A TN Function CBASIC Compiler Reference Manual

A TN Function

The A TN function returns the arctangent of a number.

Syntax:

x = ATN(numeric expression)

Explanation:

The A TN function is the inverse of the TAN function. A TN returns the angle,
expressed in radians, whose tangent is the expression. A TN returns a real number.

Examples:

x = ATN(.S484)

PI = 3.14158
IF ATN(N) < PI/Z.O THEN \

PRINT "ANGLE LESS THAN 80 DEGREES"

PI = 3.14158
RADIANS = ATN(X)
DEGREES = RADIANS * lS0/PI

18

CBASIC Compiler Reference Manual ATTACH Function

ATTACH Function

The A IT ACH function returns a Boolean integer value indicating whether or not a
specified printer is available for program use. If the printer is available, the function
attaches it to the program.

Syntax:

i% = ATIACH(printer number)

Explanation:

Use A IT ACH with concurrent or multiuser operating systems. The ATI ACH func­
tion returns the value that the operating system returns after attempting to attach a
specified printer. A logical false, 0, indicates that the printer is attached for program
use. A IT ACH returns a logical false in systems that do not support multiple printers.

Once A IT ACH attaches a printer to a program, no other program can use that
printer.

Examples:

IX. = ATTACH(Ll)

JX = ATTACH(PRINTER.NOX)

IF ATTACH(PRINTER.NOX) = TRUEX THEN GOTO MESSAGE
LPRINTER
CALL PRINT.TABLE.OF.VALUES
CALL PRINT.BAR.CHART
DETACH

19

CALL Statement CBASIC Compiler Reference Manual

CALL Statement

The CALL statement transfers program control to a multiple-line function.

Syntax:

CALL function name {(parameter list)}

Explanation:

The CALL statement passes parameters to and starts execution of the specified
function. The address of the statement following the CALL statement is placed on a
stack. A RETURN or FEND statement in the function sends control back to the
statement following the CALL statement.

The parameter list is a list of expressions, variables, or constants. You must separate
the expressions with commas. The number of parameters specified in a CALL statement
must match the number of formal parameters in the function definition. Parameter
data types in the CALL statement and function definition must also match. Numeric
parameters convert from integer to real, or real to integer, as required.

The CALL statement cannot reference a single-line function or a program label.
Section 4 explains how to define and use functions.

Examples:

CALL CLEAR.SCREEN

CALL FN.CALC.TOTAL(SUB%)

CALL GET.REC(FILE.NM$, REC.NOk, AMOUNT)

20

CBASIC Compiler Reference Manual CHAIN Statement

CHAIN Statement

The CHAIN statement loads another program into memory and starts execution.

Syntax:

CHAIN filespec

Explanation:

The CHAIN statement can load two types of programs: an overlay program gen­
erated by the linker, or a directly executable file. CHAIN can load files generated by
languages other than CBASIC. However, before you chain to an overlay file, the linker
must create that overlay and the root program at the same time.

The filespec can be a string expression, a variable, or a constant. The compiler
assumes a filetype of .OVL if not specified otherwise in the filespec. Refer to the
Programming Guide for more information on chaining modules and programs.

Examples:

CHA I N 116: AtJERAGES II

CHAIN NEW.PROG$

TOTALS$ = II ACCOUNTS. OtJL II

CHAIN CDRIVE$ + TOTAL$

21

CHR$ Function CBASIC Compiler Reference Manual

CHR$ Function

The CHR$ function returns a one character string. The string is a single ASCII
character that has the specified ASCII decimal value.

Syntax:

a$ = CHR$(numeric expression)

Explanation:

The expression contains the ASCII decimal value of the character. If the expression
is real, CHR$ converts it to an integer.

Refer to Appendix B for a listing of ASCII symbols and corresponding numeric
values. The ASC function is the inverse function of CHR$.

Examples:

REM BEEP THE TERMINAL
PRINT CHR$(7)

LINEFEED% = 10
PRINT CHR$(LINEFEED%)

IF CHR$(INP(IN.PORT%» = IIAII THEN GOSUB 100

22

CBASIC Compiler Reference Manual CLOSE Statement

CLOSE Statement

The CLOSE statement closes disk files.

Syntax:

CLOSE file number{,file number}

Explanation:

The CLOSE statement closes the files, releases the file numbers, and frees all buffer
space that the files used. A file must first be activated with a CREATE or OPEN
statement before using a CLOSE statement. An IF END statement assigned to a closed
file has no further effect unless you reassign the file number in a CREATE or OPEN
statement.

The file number is a unique identification number you assign to a file with the
CREATE or OPEN statement. File numbers can be any numeric expression. If file
numbers evaluate to real values, they convert to integers.

STOP statements automatically close all active files. A run-time error does not close
files.

Examples:

CLOSE 2

CLOSE 5 t 12 t 20

CLOSE UPDATE.FILE%t OLD.MASTER.FILE%t NEW.MASTER.FILE%

23

COMMAND$ Function CBASIC Compiler Reference Manual

COMMAND$ Function

The COMMAND$ function returns a string containing the command tail used to
execute the program.

Syntax:

a$ = COMMAND$

Explanation:

A command line is the line that you enter at the keyboard telling the operating system
to run a program. A command line consists of a command keyword and an optional
command tail. The command keyword identifies the program to execute. The command
tail can contain extra information for the program such as a filename, option, or
parameter.

The COMMAND$ function does not return the command keyword. COMMAND$
eliminates all blanks preceding the first character in the command tail and converts all
characters to upper-case.

Yau can use the COMMAND$ function anywhere, any number of times in a pro­
gram. You can use COMMAND$ in any CBASIC program loaded with a CHAIN
statement.

Examples:

IF COMMANO$ = 1111 THEN STOP

For the following command lines,

PAYROLL no checKs totals

PAYROLL NOCHECKS TOTALS

ACCOUNTS nochecKs TOTALS

COMMAND$ returns the string:

NOCHECKS TOTALS

24

CBASIC Compiler Reference Manual COMMON Statement

COMMON Statement

The COMMON statement specifies variables to retain in memory for use by chained
programs.

Syntax:

COMMON variable{,variable}

Explanation:

Only blank lines, REM statements, and data type declaration statements can precede
COMMON statements.

The compiler treats all COMMON statements in a program as one consecutive list
of variables. Therefore, a program can contain any number of COMMON statements.
All COMMON statements taken as a group must have the same number of variables
in each chained program. Each COMMON statement in a chained program can contain
a different number of variables if the total number of variables matches for all chained
programs. The position of each variable and data type must match in each chained
program. Dimensioned variables must have the same number of subscripts.

For array variables, place the number of subscripts in parentheses after the array
name. The COMMON statement does not indicate the size of the subscript. Be sure
to allocate array space with a DIM statement before referencing an array variable in
COMMON. The first program requiring access to the array must contain the DIM
statement. Subsequent programs can access the array without affecting the data.

If a DIM statement executes a second time for the same array, the original data is
lost. However, elements in a string array are not released from memory. Set string
array elements to null strings before reexecuting a DIM statement for the same string
array. Refer to the DIM statement for information on setting array elements to null.

Examples:

COMMON X

COMMON X t I 'X. t A$

COMMON A$ (Z) t B$ (3) t Y t Z

25

CONCHAR % Function CBASIC Compiler Reference Manual

CONCHAR % Function

The CONCHAR % function reads one character from the console keyboard and
returns the decimal ASCII representation of that character.

Syntax:

i% = CONCHAR %

Explanation:

CONCHAR % waits for a character to be entered at the console keyboard, then
displays the character on the console screen before returning the ASCII decimal value.
However, if the ASCII decimal value is less than 32, CONCHAR % does not display
the character.

The low-order eight bits of the returned value comprise the binary ASCII represen­
tation. The high-order eight bits are always zeros. The value returned is a decimal
integer. Refer to Appendix B for a listing of ASCII symbols and corresponding numeric
values. The INKEY function performs the same task that CONCHAR % performs
except INKEY does not display the character on the console screen.

Examples:

ALPHA% = CONCHAR%

IF CONCHAR% = 48 THEN GOSUB 1000

PRINT CHR$(CONCHAR%)

26

CBASIC Compiler Reference Manual CONSOLE Statement

CONSOLE Statement

The CONSOLE statement directs program output to the console screen.

Syntax:

CONSOLE

Explanation:

CBASIC maintains a special print control flag to determine whether output from a
PRINT statement is displayed on a console screen or printer. The CONSOLE and
LPRINTER statements set and reset the flag. You cannot access the print control flag
directly.

Initially, the flag is set to logical false and output from PRINT statements displays
on the console screen. LPRINTER sets the flag to logical true so information can be
printed on a list device. The CONSOLE statement resets the flag to false and redirects
output to the console screen.

The print control flag does not affect INPUT statement prompt strings. Prompt
strings always print on the console screen.

If the current output column is not 1, both CONSOLE and LPRINTER send a
carriage return line-feed prior to changing the print control flag. Refer to the LPRINTER

. statement for more information.

Examples:

CONSOLE

500 CONSOLE

IF LST.REQUEST THEN LPRINTER \
ELSE CONSOLE

27

CONSTAT% Function CBASIC Compiler Reference Manual

CONST A TO/o Function

The CONST ATO/o function returns a logical value signifying console status.

Syntax:

iO/o = CONSTAT%

Explanation:

Use CONST AT% to determine if the console has a ready status. Ready status means
a character has been entered at the console keyboard but has not been read by the
program. CONSTATO/o returns a -1 or logical true if the console is ready. Otherwise,
CONST AT% returns a zero or logical false.

Examples:

IF CONSTAT%
GOSU6 95

THEN \
REM PROCESS OPERATOR INTERRUPT

PRINT "PRESS ANY KEY TO CONTINUE"
WHILE NOT CONSTAT%
WEND

28

CBASIC Compiler Reference Manual COS Function

COS Function

The COS function returns the cosine of a number.

Syntax:

x = COS (numeric expression)

Explanation:

All CBASIC trigonometric functions require that you specify the numeric expression
in radians. Integers convert to real numbers. The cosine value returned is a real number.

Examples:

1% = COSC3.14159)

IF COSCANGLE) = 0.0 THEN VERTICAL% = TRUE%

PI = 3.14159
INPUT "ENTER DEGREE l)ALUE •• til; DEGREES
RADIANS = DEGREES * PI/1S0.0
X = COS(RADIANS)

29

CREATE Statement CBASIC Compiler Reference Manual

CREATE Statement

The CREATE statement creates a new disk file on disk with no information in it.

Syntax:

CREATE filespec [RECL rec length]
AS file number [BUFF number of buffers] [mode]

Explanation:

CREATE erases any preexisting file of the same name before creating the new file.
Use CREATE statements to create either stream or fixed disk files.

To make a stream file, CREATE requires a filespec and a file number. The filespec
can be a string expression, variable, or constant. The file number is a unique integer
identification number ranging from 1 to the current implementation limit for the num­
ber of files accessible at one time. Refer to Appendix A of the Programming Guide for
the current limit. Place the file number in a CREATE statement after the keyword AS.

To create a fixed file, specify the record length with the RECL parameter in addition
to the filespec and file number.

The BUFF option assigns additional internal buffers. CREATE assumes a default
value of 1 buffer if not specified otherwise. The BUFF parameter must specify 1 if you
access the file randomly.

CBASIC supports three different modes for accessing files: LOCKED, UNLOCKED,
and READONL Y. Use the mode parameter under multiuser or concurrent operating
systems. If you CREATE a file in LOCKED mode, no other program or user can access
that file. UNLOCKED mode allows more than one program or user to access the
file. READONL Y files allow more than one program or user to read the file. An­
other program or user cannot modify the data inside a READONL Y file. You cannot
CREATE a file in READONL Y mode. Use READONL Y with the OPEN statement.

30

CBASIC Compiler Reference Manual CREATE Statement

Examples:

CREATE IISALES.FEBII AS 1

CREATE IIB:TEST.DAT II RECL 250 AS 20

CREATE ACCDUNT.MASTER$ RECL 500 AS 12 BUFF a

CREATE liB: II + NAME$ + II II + LEFT$ (STR$ (CURR. WDRK'X,) t 3) \
AS CURR. WORK'X,

CREATE II FILE. OAT II AS NUM'X, BUFF (MFREI 128)

31

DATA Statement CBASIC Compiler Reference Manual

DATA Statement

The DATA statement defines a list of constants that a READ statement can assign
to variables.

Syntax:

DATA constant{,constant}

Explanation:

The constant list in a DATA statement can be any combination of integer, real, and
string constants. However, data types for the constants in the DATA statements and
the corresponding variables in the READ statements must match. Real constants assigned
to integer variables by a READ statement are truncated to the integer portion of the
real number.

DATA statements can span more than one physical line using the backslash contin­
uation character, but cannot appear on the same line with other statements. The
continuation character can appear in string constants enclosed in quotation marks.
However, string constants do not require quotation marks. Delimit each constant with
a comma or a carriage return line-feed.

DATA statements are nonexecutable statements that can appear anywhere in a
program. CBASIC treats all DATA statements in a program as one consecutive list of
constants.

See the READ and RESTORE statements for additional information.

Examples:

DATA 3,25, la, 8, S8, 181, a

DATA one, two, three, a, 5, 8.0
DATA 7.0, ei9'htf 8,10

DATA 331.5 f IIVIOLET", a58.2, IIBLUE II , \
583.7, IIYELLOW", 81a.8, IIREDII

DATA IIABC\DEF II

32

CBASIC Compiler Reference Manual DEF Statement

DEF Statement

The DEF statement defines both single-line and multiple-line functions.

Syntax:

Single-line:

DEF function name[(formal parameters)] = expression

Multiple-line:

DEF function name[(formal parameters)]\
[EXTERNAL or PUBLIC]
[declaration statements]

CBASIC statements

RETURN
FEND

Explanation:

A function definition must occur in a program before using the function. To define
a function, the word DEF must precede the function name.

Single-line function definitions use an equal sign followed by an expression. The
expression contains the actual process that the single-line function performs. The data
types used in the expression must correspond to the data type used in the function
name.

Multiple-line function definitions include optional data declarations and any number
of statements. A DEF statement precedes the declaration group, and a FEND statement
terminates the function. You can place any number of RETURN statements in the
body of the function. Refer to Section 4.4 for information on PUBLIC and EXTERNAL
functions.

33

DEF Statement CBASIC Compiler Reference Manual

In both cases, formal parameters hold a place for actual parameters specified in the
function reference. A formal parameter is either a string variable or numeric variable;
it is never a constant. If a formal parameter is a string variable, the actual parameter
must be a string expression. If the formal parameter is numeric, the actual parameter
must be numeric. However, real numbers convert to integers and integers convert to
real as required.

All formal parameters and any variables declared in the declaration group are local
to the function. Labels defined in a multiple-line function are local to that function.
Refer to Section 4 for complete information on defining and using functions.

Examples:

Single-line:

DEF FN25 = RND * 25.0

DEF HYPOT(SIDE1 tSIDE2)= \
SQR«SIDE1 * SIDE1) + (SIDE2 * SIDE2»

Multiple-line:

DEF READ.INPUT(INPUT.NO%)

FEND

DEF

FEND

READ # INPUT.NO%; CUSTNO%t AMOUNT
RETURN

TEST(At B)
INTEGER TEST t C
C = A + B
0 = A / B

DEF COUNT%(INDEX1%)
COUNTX, = 0

FEND

34

FOR 1% =1 TO INDEX1%
COUNT% = COUNT% + ARRAY(I%)

NEXT I X,
COUNTX, = COUNT%
RETURN

CBASIC Compiler Reference Manual DELETE Statement

DELETE Statement

The DELETE statement deactivates files from processing and erases them from the
disk directory.

Syntax:

DELETE file number{,file number}

Explanation:

The DELETE statement erases the file, releases the file number, and reallocates all
buffer space that the file used. An IF END statement assigned to the file number has
no further effect unless you reassign the file number with a CREATE or OPEN statement.

The file number is the unique identification number you assign to a file with a
CREATE or OPEN statement.

Examples:

DELETE 3

DELETE S, 13, 18

DELETE UPDATE.FILE%, OLD.MASTER.FILE%

35

DETACH Statement CBASIC Compiler Reference Manual

DETACH Statement

The DETACH statement deactivates a printer from program access.

Syntax:

DETACH

Explanation:

Use the DETACH statement with the A IT ACH function under concurrent or
multiuser operating systems. The DETACH statement has no effect in systems that do
not support multiple printers.

Example:

IF ATTACH(PRINTER.NO%) = FALSE% THEN GO TO MESSAGE
LPRINTER
CALL TABLE. OF. VALUES
CALL BAR.CHART

DETACH

36

CBASIC Compiler Reference Manual DIM Statement

DIM Statement

The DIM statement dynamically allocates space for an array.

Syntax:

DIM identifier(subscript list)

Explanation:

The DIM statement reserves storage space for both numeric and string arrays and
specifies the upper-bound of each subscript. Initially, the individual elements are set
to zero in numeric arrays, and are set to null in string arrays.

The number of subscripts in the DIM statement determines the number of dimensions
in the array. The number of subscripts is limited by current implementation values.
Refer to Appendix A of the Programming Guide for the current limit. The value of
each subscript plus 1 equals the number of elements in each dimension. All subscripts
have an implied lower-bound of zero.

Each execution of a DIM statement allocates a new array. If a DIM statement for
a numeric array executes a second time, data in the first allocation is lost. You should
set each element in a string array to null before executing the DIM statement a second
time. Set array elements to null by setting the elements equal to a string variable that
is not assigned a value. Refer to the Programming Guide for information on the internal
representation of arrays.

String array elements are limited to 32,760 bytes each .

. Examples:

DIM A(10)

DIM 6%(50, 50, 50)

DIM NAME$ (300), ADDRESS$ (300), PHONE (300)

37

END Statement CBASIC Compiler Reference Manual

END Statement

The END statement terminates a CBASIC program.

Syntax:

END

Explanation:

The END statement is a directive to the compiler indicating an end to the source
program. The compiler reports an error if any statements follow the END statement.

An END statement cannot appear on the same line with other statements.

The compiler adds an END statement to a program automatically if you omit it in
the source code file.

Examples:

500 END

END

38

CBASIC Compiler Reference Manual ERR Function

ERR Function

The ERR function returns a two-character string signifying the last execution error
to occur in a program.

Syntax:

a$ = ERR

Explanation:

Use the ERR function with the ON ERROR statement and ERRL function. The
two-character string contains an execution error message as listed in Appendix D of
the Programming Guide. The ERR function returns a null string if no error has occurred
in the program at the time the ERR function executes.

You can use the ERR function any number of times in a program.

Examples:

IF ERR = "OM" THEN \
PRINT "OUT OF MEMORY"

I F ERR = II E}{ II THEN \
CALL EXTENDED.ERROR(ERR)

REM IF DATA.STRING$ IS NULL, ERROR AC OCCURS
ON ERROR GOTO 100
ALPHA% = ASC(DATA.STRING$)
PR I NT AL PHA'X.

GOTO 200
100 A$ = ERR
PRINT A$

200 END

39

ERRL Function CBASIC Compiler Reference Manual

ERRL Function

The ERRL function returns the line number in which the last execution error occurred.

Syntax:

i% = ERRL

Explanation:

You can use the ERRL function with or without the ON ERROR statement. ERRL
determines the line number of the last execution error.

ERRL returns an integer. You must compile the source program using the N toggle,
or ERRL returns a zero.

Example:

REM IF DATA.STRING$ IS NULL, ERROR AC OCCURS
ON ERROR GOTO 100

STOP

END

40

ALPHA% = ASC(DATA.STRING$)
PRINT ALPHA%

100 PRINT ERRL

CBASIC Compiler Reference Manual ERRX Function

ERRX Function

The ERRX function returns the sixteen-bit MP/M IITM extended error code.

Syntax:

i% = ERRX

Explanation:

Use ERRX with the ON ERROR statement and ERR function. Execution error EX
indicates the occurrence of an MP/M II extended error. If the ERR function detects
the error EX, you can use ERRX to determine which extended error occurred. ERRX
returns an integer corresponding to an MP/M II extended error code. If an extended
error has not occurred, ERRX returns a O. Refer to the MPIM II Operating System
Programmer's Guide for descriptions of extended error codes.

Example:

ON ERROR GOTO CHECK.ERROR
OPEN "FILE.DAT" AS 5 READONLY

CHECK.ERROR:
I F ERR = II E}-{ II THEN \
PRINT "MP/M II E}-{TENDED ERROR ••• "; ERR}-{

CLOSE 5
END

41

EXP Function CBASIC Compiler Reference Manual

EXP Function

The EXP function returns the constant e raised to an exponent.

Syntax:

x = EXP(numeric expression)

Explanation:

The constant e is the base of natural logarithms equal to 2.7182. Integers convert
to real numbers. EXP returns a real number.

Examples:

x = DEVIANCE / EXP(Z)

Z = EXP(SIN(X) * COS(Y»

42

CBASIC Compiler Reference Manual FEND Statement

FEND Statement

The FEND statement terminates multiple-line, user-defined functions.

Syntax:

FEND

Explanation:

Use one FEND statement to terminate each multiple-line function definition. FEND
returns program control to the statement following the last function call or reference.

Examples:

DEF CALC.TOTAL(A%, B%)
TOT'X, = A'l, + B'X,

FEND

DEF AREA.LAND(LENGTH, WIDTH)
AREA = LENGTH * WIDTH

FEND

PRINT liTHE AREA IS ••• II;AREA
RETURN

43

FLOAT Function CBASIC Compil~r Reference Manual

FLOAT Function

The FLOAT function converts a number to a floating-point real number.

Syntax:

x = FLOAT(numeric expression)

Explanation:

A real expression first converts to an integer, then back to floating-point form.

Examples:

}{ = FLOAT(3GO)

DOLLARS = FLOAT(DOLLARS%)

POSITION = COS(FLOAT(ANG%» * OFFSET

44

CBASIC Compiler Reference Manual FOR Statement

FOR Statement

The FOR statement controls the execution of a FORINEXT loop.

Syntax:

FOR index variable = numeric expression
TO numeric expression [STEP numeric expression]

Explanation:

All statements between a FOR statement and a corresponding NEXT statement
execute repeatedly, depending on the numeric expressions. The expressions before and
after the keyword TO determine the number of loop executions. The first expression
is the initial value and the second expression is the terminating value.

Each execution of the statements in the FORINEXT loop adds the value in the STEP
expression to the index variable. If not specified, the STEP value defaults to 1. If the
STEP expression is positive, the value of the index variable must exceed the expression
following the keyword TO for the loop to terminate. If the STEP expression is negative,
the value of the index variable must become less than the expression following the
keyword TO for the loop to terminate.

The index variable must be a nonsubscripted numeric variable, either real or integer.
The FOR statement converts all numeric expressions to real numbers if the index
variable is real, and to integers if the index variable is an integer.

The sign of the STEP expression determines how the loop ends. If the STEP expression
is positive, the loop executes as long as the index variable is less than or equal to the
terminating value. If the STEP expression is negative, the loop executes as long as the
index is greater than or equal to the terminating expression.

FORINEXT loops can contain any executable statement. You can nest FORINEXT
loops. Refer to Appendix A of the Programming Guide for implementation limits on
FORINEXT loop nesting. Refer to the NEXT statement "for additional information.

45

FOR Statement CBASIC Compiler Reference Manual

Examples:

FOR I% = 1 TO 10
PRINT I 7.. ; "TESTING CBASIC! II

NEXT I%

FOR J = -1.0 TO -10.0 STEP -2.0
PRINT J ; "TESTING CBASIC!"

NEXT J

FOR POSITION=MARGIN+TABS TO PAPER.WIDTH STEP TABS
PRINT TAB(POSITION); SET.TAB$

NE}{T POS I T I ON

46

CBASIC Compiler Reference Manual FRE Function

FRE Function

The FRE function returns the amount of space available in the Free Storage Area
(FSA).

Syntax:

x = FRE

Explanation:

FRE returns an integer equal to the number of bytes available in the FSA. FRE
actually returns an unsigned 16-bit binary number. Be sure to interpret the function
correctly when free space is greater than 32,767 bytes. CBASIC treats a number greater
than 32,767 as a negative number. Consequently, a negative number indicates a large
positive value. A large amount of space remains when FRE returns a negative value.

See the MFRE function for more information.

Examples:

}{ = FRE
PRINT X

IF FRE < 500.0 THEN PRINT "LOW MEMORY SPACE! II

47

GET Function CBASIC Compiler Reference Manual

GET Function

The GET function reads one byte of data from a specified disk file.

Syntax:

i% = GET(file number)

Explanation:

Each execution of the GET function reads the binary data from one byte in the file
and returns an integer value between 0 and 255.

The file number is a unique identification number you assign to a file in a CREATE
or OPEN statement.

Examples:

Ii., = GET(3)

IF END # FILE.NO% THEN SET.EOF
WHILE NOT EOF%

WEND
STOP

CALL PROCESS(GET(FILE.NO%»

SET.EOF: EOF% = TRUE%
RETURN

48

CBASIC Compiler Reference Manual GOSUB Statement

GOSUB Statement

The GOSUB statement execution to the subroutine identified with a statement label.

Syntax:

GOSUB label
GO SUB label

Explanation:

CBASIC saves the address of the statement following a GOSUB statement on a stack.
1

This allows a RETURN statement to send control back to the statement following the
GOSUB.

The label must be defined somewhere within the program. GOSUB statements inside
multiple-line functions cannot reference a label outside the body of the function. Like­
wise, GOSUB statements outside of a given function cannot reference a label inside
the function.

Do not place a colon after an alphabetic label reference in a GOSUB statement.

Examples:

GOSUB 10

GOSUB GET.NEXT.ONE

LPRINTER
PRINT IISPACE BEFORE TABLE OF l.IALUESII
GO SUB 200
PRINT IISPACE AFTER TABLE OF ~IALUESII

STOP
200 REM PRINT THE TABLE

FOR INDEXI = 1 TO TABLE.SIZEI
PRINT TABLE(INDEXI)

NE}{T I NDE}{,X.
RETURN

49

GOTO Statement CBASIC Compiler Reference Manual

GOTO Statement

The GOTO statement transfers execution to a statement identified with a label.

Syntax:

GOTO label

GO TO label

Explanation:

The GOTO statement continues execution at the statement label you specify. If the
specified statement is not executable, execution continues with the next executable
statement encountered.

The label must be defined somewhere within the program. Labels within multiple­
line functions are local to the function. GOTO statements inside multiple-line functions
cannot reference a label outside the body of the function. Likewise, GOTO statements
outside of a given function cannot reference a label inside the function.

Do not place a colon after an alphabetic label reference in a GOTO statement.

Examples:

112 GO TO 1000

GO TO 2001.5

GOTO CALCULATIONS

X: GOTO X

50

CBASIC Compiler Reference Manual IF Statement

IF Statement

The IF statement transfers execution to one of two statements or statement groups,
depending on the value of a logical expression.

Syntax:

IF logical expression THEN statement group [ELSE statement group]

Explanation:

The IF statement determines whether the expression is true (-1) or false (0). Real
numbers convert to integers. If the expression is true, execution passes to the statement
group following the keyword THEN. If the expression is false, execution passes to the
statement group following the keyword ELSE. If you omit the ELSE portion of the IF
statement, execution falls through to the next executable statement when the logical
expression evaluates to false.

A statement group can contain one or more executable CBASIC statements. Use the
colon to group statements together and the backslash continuation character to con­
tinue a statement group over several lines.

You can nest IF statements. If required, you can use empty or null statements to
force the proper pairing of an IFffHEN portion with the corresponding ELSE portion.
An ELSE corresponds to the nearest unpaired IF.

Examples:

xx. = 100
IF X% < 150 THEN GOSUB REPEAT

IF DIMENSIONS.WANTED% THEN PRINT LENGTH, HEIGHT \
ELSE GOTO 1125

IF TIME> LIMIT THEN PRINT TIME.OUT.MSG$ \
BAD. RESPONSE% = BAD.RESPONSE% + 1 : \
QUESTION% = QUESTION% + 1 \

ELSE \
PRINT THANK.MSG$: \
GOSUB 2000 : \ ANALYSE RESPONSE
ON RESPONSE% GOSUB 2010, 2020 \

2030, 20110, 2050

51

IF END Statement CBASIC Compiler Reference Manual

IF END Statement

The IF END statement transfers program execution to a specified label when a file
access exception occurs.

Syntax:

IF END # file number THEN label

Explanation:

The IF END statement detects the following three file access exceptions:

.. attempting to READ past an end-of-file
• disk or directory full when creating or writing to a file
• attempting to OPEN a file that does not exist

Control reverts to an IF END statement when one of three preceding exceptions
occurs. Program execution transfers to the statement specified by the label that follows
the keyword THEN. An IF END statement applies to the one file specified by the file
number. The file number is a unique identification number assigned to a file in a
CREATE or OPEN statement.

A program can have any number of IF END statements for the same file to transfer
execution to different labels. The most recently executed IF END statement for a given
file number is the one in effect when a file access exception occurs.

To detect access errors for a given series of statements, the IF END statement must
execute before the statements.

52

CBASIC Compiler Reference Manual IF END Statement

You can execute an IF END statement for a file number before that file number is
active. This procedure traps errors caused by opening a file that does not exist or
creating a file when there is no directory space.

Examples:

IF END #7 THEN 500
OPEN "FILE.DAT" AS 7

IF END #19 THEN 230.5
READ #19; FIRST$, SECOND$, THIRD$

IF END FILE.NO% THEN MESSAGE
PRINT # FILE.NO%; FIRST%, SECOND%, THIRD%

53

INITIALIZE Statement CBASIC Compiler Reference Manual

INITIALIZE Statement

The INITIALIZE statement allows you to change diskettes and other removable
storage media during program execution without restarting the operating system.

Syntax:

INITIALIZE [numeric expression]

Explanation:

Storage media must be changed before the INITIALIZE statement executes. Never
change media while files are open on that media.

When using INITIALIZE under multiuser systems, use the numeric expression to
specify which drives to reset. INITIALIZE treats the expression as a series of binary
digits. You specify which drives to reset with a binary 1. Drives A through P correspond
to digits from right to left.

Examples:

I NIT I AL I ZE resets all drives

I NIT I A LIZ E 11 B resets drives A and B

I NIT I A LIZ E 11 06 resets drives Band C

I NIT I AL I ZE 10006 resets drive D

54

CBASIC Compiler Reference Manual INKEY Function

INKEY Function

The INKEY function returns the ASCII decimal value equal to a character entered
at the console keyboard.

Syntax:

i% = INKEY

Explanation:

INKEY waits for a character to be entered at the console keyboard. Unlike the
CONCHAR % function, INKEY does not display the character on the console screen.

The low-order eight bits of the returned value comprise the binary ASCII represen­
tation. The high-order eight bits are always zeros.

IN KEY is useful to prevent passwords and other special characters from printing.
IN KEY accepts control characters.

Examples:

I'l, = INKEY

WHILE INKEY <> ESC%
WEND

REM GET PASSWORD
PRINT IIENTER PASSWORD ••• II

PW$ = 1111

FOR I% = 1 TO PW.LEN%
PW$ = PW$ + CHR$(INKEY)

NE}{T I 'X,

55

INP Function CBASIC Compiler Reference Manual

INP Function

The INP function returns a value from a CPU input/output port.

i% = INP (numeric expression)

Explanation:

The INP function is hardware dependent and might not apply to certain micropro­
cessors. The expression must specify a valid I/O port number. CBASIC does not check
the validity of the port number.

Real numbers convert to integers. The function returns an eight-bit integer value.

Examples:

PRINT INP(ADDR%)

IF INP(Z55) > 0 THEN PRINT CHR$(7)

ON INP(INPUT.DEVICE.PORT%) GOSUB \
100, ZOO, 300, aoo, aoo, aoo, 500

56

CBASIC Compiler Reference Manual INPUT Statement

INPUT Statement

The INPUT statement accepts data from the console during program execution and
assigns the data to program variables.

Syntax:

INPUT [prompt string;] variable {,variable}

Explanation:

The INPUT statement prompts you for response with a question mark during pro­
gram execution. If you specify a literal prompt string, the INPUT statement prints the
string on the console screen and waits for input from the keyboard. If you specify a
null prompt string, the INPUT statement simply waits for input from the keyboard.
One blank space prints after either prompt. A prompt string must be a string constant.

Each variable initiates a request from the console screen. Each response at the console
corresponds to a variable in the INPUT statement. A warning message appears on
screen if the number of response items you enter does not match the number of variables.
You must separate individual response items with commas. However, you can enclose
string responses in quotation marks, allowing commas to serve as literal characters.
Press the carriage return key to complete a response.

All characters entered in response display on the console screen. The maximum
number of characters you can enter in response is implementation dependent. CBASIC
supports at least 255 characters in any implementation.

For numeric data entered in response to an INPUT statement, the data type converts
to the assigned variable data type. Conversion terminates if INPUT encounters an
unexpected character. INPUT does not print an error message to indicate integer
overflow.

All CPIM line-editing functions remain in effect.

Examples:

INPUT PRICES

INPUT IIPlease enter your last nafTle ••• II ; LNAME$

INPUT IIEnter three inte!fer values. lI
; INT1'X., INT2'X., INT3'X.

57

INPUT LINE Statement CBASIC Compiler Reference Manual

INPUT LINE Statement

The INPUT LINE statement accepts one line of data from the console and assigns
it to a string variable.

Syntax:

INPUT [prompt string;] LINE string variable

Explanation:

The INPUT LINE statement is a special form of the INPUT statement. Only one
variable can appear following the keyword LINE. INPUT LINE prompts you for
response with a question mark during program execution unless you specify a literal
prompt string.

INPUT LINE accepts all characters in response, including commas and spaces, until
you press the carriage return key. If you enter only a carriage return in response,
INPUT LINE assigns a null string to the variable.

The maximum length of a line is 255 characters. All CP/M line-editing functions
remain in effect.

Examples:

INPUT LINE CHARACTERS$

INPUT IIPlease' enter your address. lI
; LINE ADDR$

INPUT IIType RETURN to continue ••• II ; LINE DUMMY$

58

CBASIC Compiler Reference Manual INT Function

INT Function

The INT function returns the integer portion of a number as a floating-point number.

Syntax:

x = INT (numeric expression)

Explanation:

INT truncates the fractional portion of the expression. Integer numbers convert to
real numbers. INT returns a real number.

Examples:

x = INT(322.50)

REFUND = INT(TAXES - CONSTANT)

IF (NUM/Z) - INT(NUM/2) = 0 THEN \
PRINT IE1.JEN" ELSE PRINT "000"

59

INT% Function CBASIC Compiler Reference Manual

INTO/o Function

The INT% function returns the integer portion of a number as an integer.

Syntax:

i% = INT% (numeric expression)

Explanation:

INT% truncates the fractional portion of the expression. Integers first convert to
real numbers then back to integer form. INT% returns an integer.

Examples:

1% = INT%(452.25)

LENGTH% = 12 * INT%(FEET) + INCHES%

REFUND = INT%(TAXES - CONSTANT)

60

CBASIC Compiler Reference Manual INTEGER Statement

INTEGER Statement

The INTEGER statement is a declaration statement that specifies the integer data
type for variables and function names.

Syntax:

INTEGER identifier[,identifier]

Explanation:

Use INTEGER statements in the declaration group of a program or multiple-line
function. Declaration statements override the default data type specified with the last
character in an identifier.

To use an array identifier in an INTEGER statement, place the number of subscripts
in parentheses after the array name.

Refer to Section 2 for more information on declarations and identifiers.

Examples:

I NTEGER I 'X,

I NTEGER I t J t K

INTEGER COORO(Z) t 1(1)
STRING NAMES$(l)

61

LEFT$ Function CBASIC Compiler Reference Manual

LEFT$ Function

The LEFT$ function returns a string consisting of the leftmost characters in a string.

Syntax:

a$ = LEFT$ (string expression, numeric expression)

Explanation:

The numeric expression is a positive value specifying the number of chaxacters ...to
return. If the numeric expression is negative, an error occurs. Real expressions convert
to integers. LEFT$ returns a null string if the numeric expression equals zero. LEFT$
returns the entire string if the numeric expression specifies more characters than the
string contains.

Examples:

A$ = LEFT$("GOODXXXXX" t a)

PRINT LEFT$(INPUT.DATA$, GOOD%)

IF LEFT$(ANSWER$, 1) = "Y" THEN GOTO CONTINUE

62

CBASIC Compiler Reference Manual LEN Function

LEN Function

The LEN function returns the length of a string.

Syntax:

i% = LEN (string expression)

Explanation:

The LEN function returns an integer. LEN returns zero if the expression is a null
string.

Examples:

I 'X, = LEN(11845 BAYVIEW At)ENUEII)

IF LEN(TEMPORARY$) > 25 THEN \
PRINT IILIMIT ENTRY TO 25 CHARACTERS II

FOR INDEX% = 1 TO LEN(OBJECT$)
NUM%(INDEX%) = ASC(MID$(OBJECTS,INDEX%,l»

NEXT I NDE>{X,

63

LET Statement CBASIC Compiler Reference Manual

LET Statement

The LET statement assigns a value to a variable.

Syntax:

[LET] variable = expression

Explanation:

The keyword LET is optional.

Variables and expressions can be strings, real numbers, or integers. For numeric
expressions and variables, the LET statement converts the data type of the expression
to match the data type of the variable.

Examples:

100 LET A = 6 + C

SALARY = (HOURS.WORKED * RATE) - DEDUCTIONS

DATE$ = MONTH$ + II II + DAY$ + II II +YEAR$

S(I%) = T(IX.) + U(I%) - W

64

CBASIC Compiler Reference Manual LOCK Function

LOCK Function

The LOCK function prevents any program from modifying the data in a record.

Syntax:

i% = LOCK(file number, record number)

Explanation:

The LOCK function returns the value that the operating system returns after attempt­
ing to lock a record. Normally, a zero indicates that the record is locked. LOCK
returns a value of zero in systems that do not support record locking.

To LOCK a record, the file must be a fixed file accessed in the UNLOCKED mode.
Refer to the UNLOCK function, CREATE statement, and OPEN statement for more
information.

Examples:

I 'X, = LOCK (20 ,3)

IF LOCK(S,30) > 0 THEN GOTO LOCK.ERROR.MSG

FOR J% = 1 TO 10
K'X, = LOCK (11 ,J'X,)
PRINT K'X,

NEXT J'X,

65

LOG Function CBASIC Compiler Reference Manual

LOG Function

The LOG function returns the natural logarithm of a number.

Syntax:

x = LOG (numeric expression)

Explanation:

LOG returns the natural logarithm as a real number. Integer expressions convert to
real numbers. The expression must be a positive value greater than zero.

Examples:

x = LOG(288.72)

PRINT liThe loSarithfTl =11; LOG(VALUE%)

IF LOG(VALUE) > TOLERANCE% THEN GOSUB NEWDATA

66

CBASIC Compiler Reference Manual LPRINTER Statement

LPRINTER Statement

The LPRINTER statement directs program output to a printer.

Syntax:

LPRINTER

Explanation:

CBASIC maintains a special print control flag to determine whether output from
a PRINT statement displays on a console screen or printer. The LPRINTER and
CONSOLE statements set and reset the flag. You cannot access the print control flag
directly.

Initially, the flag is set to logical false and output from PRINT statements display
on the console screen. LPRINTER sets the flag to logical true so information is sent
to the printer. The CONSOLE statement resets the flag to false and redirects output
to the console screen.

The print control flag does not affect INPUT statement prompt strings. Prompt
strings always print on the console screen.

If the current output column is not 1, both LPRINTER and CONSOLE send a
carriage return line-feed prior to changing the print control flag. See the CONSOLE
statement.

Examples:

500 LPRINTER

LPRINTER
PRINT IIA table of relative values follows. 1I

PRINT
PRINT TA6LE.VALUES

IF DOCUMENT.FILE% THEN LPRINTER

67

MATCH Function CBASIC Compiler Reference Manual

MATCH Function

The MATCH function returns the position of the first occurrence of a specified
character pattern in a string.

Syntax:

i% = MATCH (pattern string, string expression, numeric expression)

Explanation:

MATCH searches the string expression for a series of characters that matches the
pattern defined in the pattern string. The numeric expression specifies a position in the
string expression to begin searching.

The pattern string contains a series of letters and digits, plus the following wildcard
matching characters, which represent different classes of characters.

represents any digit
! represents any lower-case or upper-case letter
? represents any character

MATCH returns a zero if either the pattern string or string expression is a null
string.

The backslash is an escape character in the pattern string. Any character after the
backslash is literal, and does not serve as a wildcard character.

Examples:

MAT C H (II i 5 II, II No IN i 5 the t i tTl e ! II, 1) returns the position 5

MAT C H (II # # II, II 0 c t 0 b e r 8, 1 882 II, 1) returns 12
'-..

MAT C H (II a ? II, II C h a rae t e r II f 1I) returns 5

MAT C H (II \ # II, II 1 # 2 3115 # 6 7 8 8 II, 3) returns 7

MAT C H (II ABC 0 II, II ABC II f 1) returns 0

68

CBASIC Compiler Reference Manual MFRE Function

MFRE Function

The MFRE function returns the largest contiguous area of available memory space
in the Free Storage Area (FSA).

Syntax:

i% = MFRE

Explanation:

MFRE returns an integer equal to the largest number of contiguous bytes available
in the FSA. MFRE returns an unsigned 16-bit binary number. Be sure you interpret
the function correctly when the amount of contiguous free space is greater than 32,767
bytes. CBASIC treats a number greater than 32,767 as a negative number. Therefore,
a negative number actually indicates a large positive value. When MFRE returns a
negative value, a large contiguous segment of space remains in memory.

MFRE returns an integer that is less than or equal to the value returned by the FRE
function. The FRE function returns the total amount of unallocated space in the FSA
whether or not it is contiguous. Refer to the Programming Guide for a description of
the- Free Storage Area.

Examples:

PRINT "CHECK POINT #1"; MFRE

IF MFRE < A.SIZE% THEN \
PRINT "CANNOT DIMENSION ARRAY! II

WHILE MFRE > MIN%
CALL ALLOCATE.MORE

WEND

69

MID$ Function CBASIC Compiler Reference Manual

MID$ Function

The MID$ function returns a segment of a string.

Syntax:

A$ = MID$ (string expression, numeric expression,
numeric expression), ~r ~r

L t,l\) ~ /Uf Ub f) ·\/(I/V'

Explanation:

The first numeric expression specifies a position that determines the first character
to return from the original string. MID$ returns a null string if the first numeric
expression is greater than the length of the string. The second numeric expression
specifies the length of the string segment to return. MID$ returns all characters to the
right of the first character specified in the first numeric expression, if the second numeric
expression is greater than the number of characters to the right of the first character.
The function converts real numbers to integers.

Examples:

DIGITS$ = MID$(ITOMAHAWKZ551K", 9, 4)

VALID$ = MID$(LISTING$, POS%, 1)

DAY$ = M I 0$ (II MONTUEWEDTHUFR I SATSUN ", DAYX.*3-Z, 3)

70

CBASIC Compiler Reference Manual MOD Function

MOD Function

The MOD function returns the remainder from an integer division.

Syntax:

i% = MOD (numeric expression, numeric expression)

Explanation:

The MOD function divides the first expression by the second and returns the remain­
der. Real numbers convert to integers. MOD returns an integer value.

Examples:

I'l, = MOD(J'X., K',Y,,)

IF MOD(L%, MAX%) <> 0 THEN \
PRINT IINOT DIVISOR II

71

NEXT Statement CBASIC Compiler Reference Manual

NEXT Statement

The NEXT statement denotes the end of a FORINEXT loop.

Syntax:

NEXT [index variable]

Explanation:

If specified, the index variables after the keyword NEXT must match the index
variables in the corresponding FOR statement. The NEXT statement sends control to
the beginning of the FORINEXT loop until the termination criteria for the loop is met.
Refer to the FOR statement for additional information.

Examples:

FOR 1% = 1 TO 10
PRINT }.{(I 'x. >

NE}·{T I 'X,

FOR LOOP% = 1 TO ARRAY.SIZE%
GO SUB 210
GO SUB 410

72

CBASIC Compiler Reference Manual ON Statement

ON Statement

The ON statement transfers program execution to one of a number of labels. The
ON statement has two forms.

Syntax:

ON numeric expression GOTO label{,label}
ON numeric expression GOSUB label{,label}

Explanation:

The numeric expression determines where to transfer program execution. If the
expression evaluates to 1, ON branches to the first label. If the expression evaluates
to 2, ON branches to the second label and so forth. However, if the numeric expression
evaluates to a number less than one or greater than the number of labels, the results
are unpredictable. Always test the value of the numeric expression before executing
an ON statement. Real number expressions convert to integers. .

When using the ON statement with a GOSUB, the RETURN statement in the sub­
routine returns execution to the first executable statement following the ON statement.

There is no limit to the number of labels allowed in an ON statement. A label can
appear anywhere in a program in relation to the ON statement except in a multiple­
line function.

73

ON Statement CBASIC Compiler Reference Manual

Examples:

ON 1% GOTO 10, 20, 30

ON RESULT% - 1 GOSU6 290, 820, 1000, 110

WHILE TRUE%
GOSU6 100 REM ENTER PROCESS DESIRED
GOSU6 110 REM TRANSLATE PROCESS NUM6ER
IF PROCESS.DESIRED% = 0 THEN REPEAT
IF PROCESS.DESIRED% < 8 THEN \

ON PROCESS.DESIRED% GOSU6 \
1000, \ ADD A RECORD
1010, \ ALTER NAME
1020, \ UPDATE QUANTITY
1030, \ DELETE A RECORD
1040 \ CHANGE COMPANY CODE
1050 \ GET PRINTOUT

ELSE GOSU6 400 REM ERROR - REPEAT
WEND

74

CBASIC Compiler Reference Manual ON ERROR Statement

ON ERROR Statement

The ON ERROR statement branches execution to a label upon detection of an
execution error.

Syntax:

ON ERROR GOTO label

Explanation:

Program control reverts to an ON ERROR statement when an execution error occurs
in a program following the ON ERROR statement. If you use more than one ON
ERROR statement in a program, the last one to execute remains in effect.

Do not use an ON ERROR statement in a multiple-line function. If you return from
a multiple-line function using an ON ERROR statement, the return address is lost
because the stack is reset. You can use the ON ERROR statement with the ERR and
ERRL functions.

Example:

REM IF DATA.STRING$ IS NULL, ERROR AC OCCURS
ON ERROR GOTO 100
ALPHA% = ASC(DATA.STRING$)
PRINT ALPHA'X,

GOTO 200
100 A$ = ERR
PRINT A$
1% = ERRL
PRINT I'l,

200 END

75

OPEN Statement CBASIC Compiler Reference Manual

OPEN Statement

The OPEN statement opens an existing disk file for reading or updating.

Syntax:

OPEN "filespec" [RECL rec length]
AS file number [BUFFnumber of buffers] [mode]

Explanation:

Use OPEN statements to open both stream and fixed disk files. If you specify a file
that does not exist, the program detects an end-of-file condition.

To open an existing stream file, OPEN requires a filespec and a file number. The
filespec can be a string expression, a variable, or a constant. The file number is a unique
integer identification number ranging from 1 to the current implementation limit for
the number of files accessible at one time. Refer to Appendix A of the Programming
Guide for current limits. Place the file number in an OPEN statement after the keyword
AS.

To access an existing fixed file, you must specify the fixed record length with the
RECL parameter in addition to the filespec and file number. Assign the same record
length that you assigned in the original CREATE statement.

The BUFF option assigns additional internal buffers. OPEN assumes a default value
of one buffer if not specified otherwise. BUFF must specify 1 if you access a file
randomly.

CBASIC supports three different modes for accessing files: LOCKED, UNLOCKED,
and READ ONLY. Use the mode parameter under multiuser or concurrent operating
systems. If you OPEN a file in LOCKED mode, no other program or user can access
that file. UNLOCKED mode allows more than one program or user to access the file.
READONL Y files allow more than one program or user to read the file. Another
program or user cannot modify the data inside a READONL Y file.

76

CBASIC Compiler Reference Manual OPEN Statement

Examples:

OPEN IISAlES.APR Il AS 2

OPEN liB: QUESTION.DAT II RECl 300 AS 18

OPEN ACCOUNT.MASTER$ AS 12 BUFF 4

OPEN IIB: II + NAME$ + II II + lEFT$(STR$(CURR.WORK'X,) t 3)
AS CURR. WORK 'X,

77

OUT Statement CBASIC Compiler Reference Manual

OUT Statement

The OUT statement sends an integer value to a specified CPU output port.

Syntax:

OUT numeric expression, numeric expression

Explanation:

The OUT function is hardware dependent and might not apply to certain micro­
processors. The first expression must specify a valid output port number. CBASIC does
not check the validity of the port number. The second expression specifies an eight­
bit integer value to send.

Real numbers convert to integers.

Examples:

OUT 1, 58

OUT 3, 80H

OUT FRONT.PANELZ, RESULTZ

OUT PORTX, (SELECTED%), ASC (II $")

78

CBASIC Compiler Reference Manual PEEK Function

PEEK Function

The PEEK function returns the contents of a memory location.

Syntax:

i% = PEEK (numeric expression)

Explanation:

The expression must evaluate to an absolute address for the computer you use.
CBASIC does not check the validity of this memory address.

PEEK converts real-number expressions to integers.

Examples:

I 'X. = PEEK (250)

CONTENTS% = PEEK(MEM.ADDR%)

FOR INDEX% = 1 TO PEEK%(BUFFER%)
IN.BUFFER$(INDEX%) = CHR$(PEEK%(BUFFER%+INDEX%»

NEXT I NDEX'X.

79

POKE Statement CBASIC Compiler Reference Manual

POKE Statement

The POKE statement stores one byte of data into a memory location.

Syntax:

POKE numeric expression, numeric expression

Explanation:

The first expression must evaluate to an absolute memory address for the computer
you use. CBASIC does not check the validity of this memory address.

The second expression specifies the value to store. POKE converts this value into a
one-byte integer.

Examples:

POKE 135, 54

POKE 1700, ASC(11$11)

FOR LOC% = 1 TO LEN(OUT.MSG$)
POKE MSG.LOC%+LOC%, ASC(MID$(OUT.MSG$,LOC%,l»

NEXT LOCX,

80

CBASIC Compiler Reference Manual POS Function

POS Function

The POS function returns the next column position to be printed on the console or
printer.

Syntax:

i% = POS

Explanation:

POS returns the next output column for either the console or printer, depending on
which output mode is in effect. POS determines the number of characters and spaces
output to the console or printer since the last carriage return. POS returns that total
plus 1 to indicate the next column available for output.

POS returns inaccurate values if you output cursor control characters or backspace
characters.

Examples:

PRINT liThe print head is at colUfTln: II; POS

IF (WIDTH.LINE - POS) < 15 THEN GOSUB LINEFEED

81

PRINT Statement CBASIC Compiler Reference Manual

PRINT Statement

The PRINT statement outputs data to the console or printer.

Syntax:

PRINT [expression{ delim iter; expression }delimiter]

Explanation:

PRINT outputs expressions to the console unless the LPRINTER statement is in
effect.

Use any number of expressions with the PRINT statement; delimit each expression
with a comma or semicolon. The comma tabs to the next column that is a multiple of
20 before the next expression prints. The semicolon allows expressions to print con­
tinuously on a line with no spaces in between. However, numeric expressions are
always separated by one space.

The keyword PRINT with no expression list outputs a carriage return line-feed. The
PRINT statement sends a carriage return line-feed after each execution unless a comma
or semicolon follows the last expression.

Refer to Section 5 for more information on input and output.

Examples:

PRINT IIThis proSrafTl calculates total profits. 1I

PRINT QUANTITY%, PRICE, QUANTITY% * PRICE

PRINT IIToday's date is: II; MONTH$; II II; DAYA,; II II; YEARA,

82

CBASIC Compiler Reference Manual PRINT USING Statement

PRINT USING Statement

The PRINT USING statement allows you to specify special formats for output data.
The PRINT USING # variation directs formatted output to a disk file.

Syntax:

PRINT USING format string;[#(ile number,[rec number];]
expression {,expression}

Explanation:

The format string is a model for the output. A format string contains data fields and
literal data. Data fields can be numeric or string types. Any character in the format
string that is not part of a data field is a literal character. Format strings cannot be
null strings. Table 3-1 describes characters that have special meaning in format strings.

Table 3-1. Special Characters in Format Strings

Character Meaning

single-character string field

& variable-length string field

/ fixed-length string field delimiter

*I: digit position in numeric field

** asterisk fill in numeric field

$$ float a $ in numeric field

decimal point position in numeric field

leading or trailing sign in numeric field

exponential position in numeric field

place comma every third digit before decimal point

\ escape character

83

PRINT USING Statement CBASIC Compiler Reference Manual

The expression list tells which variables hold the data to be formatted. Separate each
variable with a comma or semicolon. The comma does not cause automatic tabbing
as it does with unformatted printing. PRINT USING matches each variable in the list
with a data field in the format string. If there are more expressions than there are fields
in the format string, execution is reset to the beginning of the format string.

While searching the format string for a data field, the type of the next expression in
the list, either string or numeric, determines which data field to use. Section 5.3 has
additional information on formatted printing.

Examples:

PRINT USING "###"; IX,

ST$= "Total arTlount due is $$# t###.##"

PRINT USING ST$; TOTAL.DUE

PRINT USING "! ! "; #15; "ALPHA" t "BETA" t "GAMMA"

84

CBASIC Compiler Reference Manual

PRINT # Statement

The PRINT # statement outputs data to a disk file.

Syntax:

PRINT # file number[,rec number];expression
{,expression}

Explanation:

PRINT #Statement

The PRINT # statement writes expressions to the file specified by the file number.
Each PRINT # statement executed creates a single record. Each expression used in the
PRINT # statement creates a single field.

Use any number of expressions with the PRINT # statement and separate each one
with a comma.

You can specify a random access record number for files that have a fixed record
length. However, the amount of data written to fixed-length records must not exceed
the record length specified in the RECL parameter in the CREATE or OPEN statement.
You must add two bytes for the carriage return line-feed when determining the amount
of data you can print to a record. Record numbers start with one, not zero.

Refer to Section 5 for more information on using disk files.

Examples:

CREATE IFILE.1" AS 1
A$ = "FIELD.ONE"
B'X, = "2222211

PRINT #1; A$t B%

REM STORE CURRENT VALUE IN RECORD 5
OPEN "UPDATE.DAT" RECL 10 AS 15

INPUT "Enter current value."; VALUE'X,
PRINT #15t5; VALUE

85

PUT Statement CBASIC Compiler Reference Manual

PUT Statement

The PUT statement writes one byte of data to a specified disk file.

Syntax:

PUT file number expression

Explanation:

Each execution of the PUT statement writes binary data for one byte to the file.

The expression can be any value between 0 and 255. Real expressions convert to
integers. The file number is a unique identification number you assign to a file in a
CREATE or OPEN statement.

Examples:

PUT 3, 255

PUT 20, ALPHA%

86

CBASIC Compiler Reference Manual RANDOMIZE Statement

RANDOMIZE Statement

The RANDOMIZE statement seeds the random number generator for use with the
RND function.

Syntax:

RANDOMIZE

Explanation:

An INPUT statement must precede any RANDOMIZE statement if your operating
system does not support a time-of-day function. During program execution, the amount
of time it takes a user to respond to the INPUT statement serves as a variable to seed
the random number generator.

See the RND function for more information.

Examples:

INPUT IIType any character to continue. lI
; LINE A$

RANDOMIZE

87

READ Statement CBASIC Compiler Reference Manual

READ Statement

The READ statement sequentially assigns the constants in a DATA statement to
variables.

Syntax:

READ variable {,variable}

Explanation:

CBASIC maintains a pointer to keep track of the next constant in the DATA statement
constant list. Each time a READ statement executes, READ assigns a constant in the
DATA statement to the next variable in the READ statement. Then, READ sets the
pointer to the next constant in the DATA statement. A compiler error occurs if the
READ statement attempts to read past the last constant.

READ statements must assign each constant to a variable with a matching data type.
If the data types do not correspond, the READ statement might assign an unexpected
value to a variable.

Refer to the DATA and RESTORE statements for further information.

Examples:

DATA 1, 2, 3.0
READ FIRST%, SECOND%, THIRD

FOR I ·X. = 1 TO 5
READ NAMES$

NE}-{T 1%
DATA IIBROWN II , IIBAILEY II , IIJOHNSONII
DATA IIERICSON II , IIPRINCE II

88

I

CBASIC 'Compiler Reference Manual READ # Statement

READ # Statement

The READ # statement reads data fields from a specified disk file into variables.

Syntax:

READ # file number[,rec number] ;variable
{,variable}

Explanation:

The READ # statement reads expressions from a disk file specified by the file number.
The file number is a unique identification number assigned to a file in the CREATE or
OPEN statement. [File numbers are limited by the current implementation value for
the number of files allowed open at one time.] Each READ # statement executed reads
data sequentially, field by field, into the variables. READ # assigns one field of data
to each variable. When reading a fixed file, the number of variables in the READ #
statement must be less than or equal to the number of fields in each record.

You can specify a random access record number for files that have a fixed record
length. Record numbers start with one, not zero.

Refer to Section 5 for more information on using disk files.

Examples:

OPEN liB: FILE.DAT II AS 8
WHILE NUMBER.OF.FIELDS%

READ #8; FIELDS$
PR I NT F I ELDS'X,
NUMBER.OF.FIELDS% = NUMBER.OF.FIELDS% - 1

WEND

REM READ RECORD 3 ••• FIELDS ONE AND TWO
IF END # 15 THEN 700
OPEN IIFILE.l 11 AS 15

READ #15, 3; FIELD1$, FIELD2%

89

READ # LINE Statement CBASIC Compiler Reference Manual

READ # LINE Statement

The READ # LINE statement reads one complete line of data from a file and assigns
the information to a string variable.

Syntax:

READ # file number, [record number]; LINE string variable

Explanation:

You can use only one variable after the keyword LINE. The variable must be a string
variable.

The READ # LINE statement can read records accessed sequentially or randomly.

Examples:

READ #FILE.NO%; LINE 0$

READ #F%t REC%; LINE X$

90

CBASIC Compiler Reference Manual FUEAL Statement

REAL Statement

The REAL statement is a declaration statement that specifies a real number data
type for variables and function names.

Syntax:

REAL identifier [,identifier]

Explanation:

Use REAL statements in the declaration group of a program or multiple-line function.
Declaration statements override the default data types specified with the last character
in an identifier.

To use an array identifier in a REAL statement, place the number of subscripts in
parentheses after the array name.

Refer to Section 2 for more information on declarations and identifiers.

Examples:

REAL X

REAL }{ t Y t Z

REAL COORO(Z) t }{

STRING NAMES$(l)

91

REM Statement CBASIC Compiler Reference Manual

FUE~ Statennent

The REM statement documents a source program to improve readability.

Syntax:

REM any characters carriage return

REMARK any characters carriage return

Explanation:

The REM statement allows program documentation. REM statements do not affect
the size of a compiled program. Adding comments to a program with the REM state­
ment makes the program easier to understand and maintain. The compiler ignores
everything that follows the keywords REM or REMARK on a physical line.

The continuation character allows a remark to span more than one physical line.
The REM statement can appear on the same line with other statements, but must be
the last statement on a logical line. A colon is not required to separate the REM from
executable statements.

Examples:

REM THIS IS A REMARK

reMarK this is also a reMarK

TAX = 0.15 * INCOME REM LOWEST TAX RATE

92

REM THIS SECTION CONTAINS THE \
TAX TABLES FOR CALIFORNIA

CBASIC Compiler Reference Manual RENAME Function

RENAME Function

The RENAME function allows you to change the name of a disk file during program
execution.

Syntax:

i% = RENAME ({ilespec,{ilespec)

Explanation:

The first filespec is the new name assigned to the file. The second filespec is the file
to rename. The RENAME function returns an integer value. RENAME returns a -1 if
the function is successful and a 0 if the function fails. Assigning a file a name that
already exists causes an execution error.

Be sure to close a file before renaming it. Otherwise, when files automatically close
at the end of processing, CBASIC tries to close the renamed file under the old name
but cannot find it.

Examples:

DUMMY'X. = RENAME (II PAYROLL. MST II, II PAYROLL. $$$11)

IF RENAME(NEWFILE$, OLDFILE$) THEN RETURN

93

RESTORE Statement CBASIC Compiler Reference Manual

RESTORE Statement

A RESTORE statement allows rereading of the constants in DATA statements.

Syntax:

RESTORE

Explanation:

A RESTORE statement repositions the DATA statement pointer to the beginning of
the DATA statement constant list. Use a RESTORE statement to reread the constants
in the DATA statements. The CHAIN statement automatically executes a RESTORE
statement.

Refer to the DATA and READ statements for more information.

Examples:

500 RESTORE

IF END.OF.DATA% THEN RESTORE

94

CBASIC Compiler Reference Manual RETURN Statement

RETURN Statement

The RETURN statement transfers control from a subroutine back to the calling
program.

Syntax:

RETURN

Explanation:

The RETURN statement transfers execution of a program to the location saved on
top of the return stack. The subroutine call can be a GOSUB statement, an ON ... GOSUB
statement, or a call to a multiple-line function.

RETURN passes a value back to the main program when returning from a multiple­
line function.

Examples:

500 RETURN

IF ANSWER.VALIDX THEN RETURN

95

RIGHT$ Function CBASIC Compiler Reference Manual

RIGHT$ Function

The RIGHT$ function returns a string consisting of the rightmost characters in a
string.

Syntax:

a$ = RIGHT$(string expression,numeric expression)

Explanation:

The numeric expression is a positive value specifying the number of characters from
the string expression to return. If the numeric expression is negative, an execution error
occurs. Real expressions convert to integers. RIGHT$ returns a null string if the numeric
expression equals zero. RIGHT$ returns the entire string if the numeric expression
specifies more characters than the string contains.

Examples:

IF RIGHT$(ACCOUNT.NO$t1) = "0" THEN \
TITLE.ACCT% = TRUE

NAME$ = RIGHT$(NAME$,LEN(NAME$)-LEN(FIRST.NAME$»

96

CBASIC Compiler Reference Manual RND Function

RND Function

The RND function generates and returns a random number.

Syntax:

x = RND

Explanation:

RND returns a uniformly distributed random number between 0 and 1. The
RANDOMIZE statement seeds a random number generator to avoid identical sequences
of random numbers. RND returns a real number.

Refer to the RANDOMIZE statement for further information.

Examples:

DIE%=INT%(RND*6.)+1

IF RND > .5 THEN \
HEADS'X, = TRUE'X, \

ELSE \
TA I LS'X, = TRUE'X,

97

SADD Function CBASIC Compiler Reference Manual

SADD Function

The SADD function returns the address of a specified string.

Syntax:

i% = SADD$(string variable)

Explanation:

Strings are stored as a sequential list of ASCII characters. The first two bytes hold
the length of the string followed by the actual ASCII values. The length is stored as
an unsigned binary integer. SADD returns an integer equal to the address of the first
byte of the length.

If the expression is a null string, SADD returns a zero.

Examples:

The following statements place the address of STRING$ into the address stored in
PARM.LOC% :

POKE PARM.LOC%,SADD(STRING$) AND OFFH
POKE PARM.LOC%+l,SADD(STRING$)/Z5G

98

CBASIC Compiler Reference Manual SGN Function

SGN Function

The SGN function returns an integer value representing the algebraic sign of a
number.

Syntax:

iO/o = SGN(numeric expression)

Explanation:

SGN returns a -1 if the expression is negative, a 0 if the expression is zero, and a
+ 1 if the expression is greater than zero.

Real number expressions convert to integers.

Examples:

IF SGN(BALANCE) <>
OUTSTAND I NGBALX,

o THEN \
= TRUE'X,

IF SGN(BALANCE) = -1 THEN \
OVERDRAWN% = TRUE%

99

SHIFf Function CBASIC Compiler Reference Manual

SHIFf Function

The SHIFf function returns an integer that is arithmetically shifted a specified number
of positions to the right.

Syntax:

i% = SHIFT(numeric expression, numeric expression)

Explanation:

The first expression specifies the value that the function shifts. The second expression
specifies the number of positions to shift the value in the first expression to the right.
SHIFf returns a 0 if the second expression is greater than 15.

The function shifts arithmetically. SHIFT divides the value in the first expression by
2 for each position shifted to the right. The function retains the arithmetic sign of the
first expression after a shift. Therefore, if the first expression is positive, zeros shift
into the high-order positions. When the value is negative, ones shift into the high-order
positions.

Examples:

SHIFT (12345, 3)

SHIFT (FFH, 2)

SHIFT (10110116, 1)

100

CBASIC Compiler Reference Manual SIN Function

SIN Function

The SIN function returns the sine of a number.

Syntax:

x = SIN (numeric expression)

Explanation:

The SIN function assumes the expression is an angle in radians. Integers convert to
real numbers. The sine value returned is a real number.

Examples:

FACTOR(Z) = SIN(A - B/C)

IF SIN(ANGLE/(Z.O * PI» = 0.0 THEN \
PRINT "HORIZONTAL"

\

101

SIZE Function CBASIC Compiler Reference Manual

SIZE Function

The SIZE function returns the number of i-kilobyte blocks in a specified file.

Syntax:

iO/o = SIZE ((ilespec)

Explanation:

The filespec can specify ambiguous filenames if your operating system supports
ambiguous references.

The SIZE function returns the number of bytes allocated for all files specified in the
filespec, divided by 1024.

The SIZE function returns an unsigned integer.

Examples:

S I Z E. (II N A M E S • 6 A K II)

SIZE(COMPANY$ + DEPT$ + ".NEW")

SIZE(I*.6AS")

70 REM TESTING FOR ENOUGH SPACE
SIZE.OF.OUTPUrX. = 1.25 * SIZE("A: INPUT")
FREE.6LOCKS'X. = 241 - SIZE("6:*.*")
IF FREE.6LOCKS% < SIZE.OF.OUTPUT% THEN \

ENOUGH.ROOM% = FALSE% \
ELSE ENOUGH.ROOM% = TRUEX

RETURN

102

CBASIC Compiler Reference Manual SQR Function

SQR Function

The SQR function returns the square root of a number.

Syntax:

x = SQR(numeric expression)

Explanation:

SQR returns a real number. Integers convert to real numbers. If the .expression is
negative, an execution error occurs.

Examples:

PRINT USING \
liTHE SQR ROOT OF }< IS: ####.##"; SQR(}<)

103

STOP Statement CBASIC Compiler Reference Manual

STOP Statement

A STOP statement terminates program execution and returns control to the operating
system.

Syntax:

STOP

Explanation:

The STOP statement closes all open files and returns control to the operating system.
Any number of STOP statements can appear in a program.

Examples:

400 STOP

IF STOP.REQUESTED THEN STOP

104

CBASIC Compiler Reference Manual STR$ Function

STR$ Function

The STR$ function converts a number to a string.

Syntax:

a$ = STR$(numeric expression) ,

Explanation:

STR$ converts the expression to a string of characters identical to the digits in the
expression. STR$ deletes the blank space that follows a number. Integers convert to
real numbers.

Examples:

PRINT STR$(NUMBER)

I F LEN (STR$ ('.JALUE) »5 THEN ED$= II ####### II

105

STRING Statement CBASIC Compiler Reference Manual

STRING Statement

The STRING statement is a declaration statement that specifies a string data type
for variables and function names.

Syntax:

STRING identifier [,identifier]

Explana tion:

Use STRING statements in the declaration group of a program or multiple-line
function. Declaration statements override the default data type specified with the last
character in an identifier.

To use an array identifier in a STRING statement, place the number of subscripts
in parentheses following the array name.

Refer to Section 2 for more information on declarations and identifiers.

Examples:

STRING A$

STRING A, 5, C

STRING NAMES$, TITLE$
REAL SALARY$

106

CBASIC Compiler Reference Manual STRING$ Function

STRING$ Function

The STRING$ function returns a string that consists of one string copied a specified
number of times.

Syntax:

a$ = STRING$ (numeric expression, string expression)

Explanation:

The numeric expression specifies the number of times to copy the string in the string
expression. The length of the returned string equals the length of the string in the string
expression, multiplied by the numeric expression.

STRING$ reduces memory fragmentation when building large strings and executes
significantly faster than building a string using concatenation.

Numeric expressions that evaluate to real numbers convert to integers.

Examples:

STR I NG$ (3 f II AB II) returns ABABAB

STR I NG$ (0 f A$) returns a null string

STR I NG$ (1'1.. f II II) returns a null string

107

TAB Function CBASIC Compiler Reference Manual

TAB Function

The TAB function moves the cursor or print head to a specified column.

Syntax:

TAB (numeric expression)

Explanation:

The expression specifies a column number. If the value of the expression is less than
or equal to the current print position, TAB sends a carriage return line-feed before
tabbing to the specified column. The expression cannot exceed the line width.

TAB outputs blank characters until the cursor or print head reaches the desired
position. An incorrect TAB column might result if a program outputs cursor or printer
control characters.

Do not use TAB with PRINT # statements. Use the TAB function in PRINT or
PRINT USING statements only. TAB rounds real expressions to the nearest integer.

Examples:

PRINT TAB(15); II}", II

PRINT "THIS IS COL. 1" ;TAB(50) ;IITHIS IS COL. 50 11

PRINT TABO{i..+Yi..lZi..);II! II ;TAB(POSi..+OFFSET'X);

PRINT TAB(LENCSTR$CNUMBER») ;11*11

108

CBASIC Compiler Reference Manual TAN Function

TAN Function

The TAN function returns the tangent of a number.

Syntax:

x = T AN(numeric expression)

Explanation:

The TAN function assumes the expression is a value in radians. Integers convert to
real numbers. The tangent value is a real number.

Examples:

POWER.FACTOR = TAN(PHASE.ANGLE)

QUIRK = TAN(X - 3.0 * COS(Y»

109

UCASE$ Function CBASIC Compiler Reference Manual

UCASE$ Function

The UCASE$ function translates lower-case characters to upper-case.

Syntax:

a$ = UCASE$(string expression)

Explanation:

UCASE$ returns a string with all of its lower-case characters converted to upper­
case. The function does not change the original string.

Examples:

IF UCASE$(ANS$) = "YES" THEN\
RETURN \

ELSE STOP

NAME$ = UCASE$(NAME$)

110

CBASIC Compiler Reference Manual UNLOCK Function

UNLOCK Function

The UNLOCK function unlocks a record, allowing modification of the data in the
record.

Syntax:

iO/o = UNLOCK(file number, record number)

Explanation:

The UNLOCK function returns the value that the operating system returns after
attempting to unlock a record. Normally, a zero indicates that the record is unlocked.
UNLOCK returns a value of zero in systems that do not support record locking.

To LOCK or UNLOCK a record, the file must be a fixed file accessed in the UNLOCKED
mode. Refer to the LOCK function, CREATE statement, and OPEN statement for
more information.

Examples:

IF UNLOCK(l t REC%) THEN CALL ERROR.MSG

111

VAL Function

VAL Function ... I
CBASIC Comp'iler Reference Manual

~~1/-
~1/0t)

The VAL functIon converts a dIgIt strmg to a ~7al number.

Syntax: o
x = VAL(digit string expression)

Explanation:

VAL processes from left to right until it reaches the end of the string or until it
encounters a character that is not a digit.

VAL returns a zero if the string is null. A plus or minus sign can precede the digit
string .

. Examples:

PRINT ARRAY$(VAL(IN.STRING$»

ON VAL(PROG.SEL$) GOSUB lOt 20t 30t 40t.50

112

I:'

CBASIC Compiler Reference Manual VARPTR Function

V ARPTR Function

The V ARPTR function returns the address of a variable.

Syntax:

i% = VARPTR (variable)

Explanation:

V ARPTR returns the actual address for an unsubscripted numeric variable. For
string variables, however, VARPTR returns the address of a 16-bit pointer. The actual
location of the string varies because strings are allocated dynamically, but the value
that V ARPTR returns does not change during program execution. If a variable is in
COMMON, the VARPTR value location does not change after chaining.

For subscripted variables, V ARPTR returns the address of a pointer to an array in
the Free Storage Area. Refer to the Programming Guide for a description of the Free
Storage Area.

Examples:

A 'X, = 1.IARPTR O{)

PRINT VARPTR (1%)

DIM A$(10)
CALL PROCESS (VARPTR (AS»

113

WEND Statement CBASIC Compiler Reference Manual

WEND Statement

A WEND statement denotes the end of a WHILEIWEND loop.

Syntax:

WEND

Explanation:

The WEND statement sends control to the beginning of the WHILEIWEND loop
until the WHILE expression evaluates to logical false (0).

Branching to a WEND statement sends control to the corresponding WHILE statement.

Examples:

WHILE VALUE) 1
PRINT "}{"

WEND

WHILE ACCDUNT.IS.ACTIVE%
GDSU6 100 REM ACCUMULATE INTEREST

WEND

TIME = 0.0
TIME.EXPIRED% = FALSE%
WHILE TIME < LIMIT

WEND

TIME = TIME + 1.0
IF CDNSTAT% THEN \

RETURN REM ANSWERED IN TIME

TIME.EXPIRED% = TRUE%
RETURN

114

CBASIC Compiler Reference Manual WHILE Statemen't

WHILE Statement

The WHILE statement specifies the conditional expression that controls a WHILE/
WEND loop.

Syntax:

WHILE logical expression

Explanation:

All statements between a WHILE statement and a corresponding WEND statement
execute until the value of the expression following the keyword WHILE evaluates to
logical false (0).

Real expressions convert to integers. Integer expressions reduce execution time.
WHILEfWEND loops can be nested.

Examples:

PRINT IIPRESS ANY KEY TO CONTINUE II
WHILE NOT CONSTAT%
WEND

WHILE NUMBER.OF.FIELDS%

WEND

READ #FILE.DAT; FIELD$
PRINT FIELD$
NUMBER.OF.FIELDS% = NUMBER.OF.FIELDS% - 1

WHILE FILE.EXISTS%
WH I LE TRUEX.

WEND
WEND

IF ARG$ = ACCT$ THEN \
ACTIVITY% = TRUE% :\
RETURN

IF ARG$ < ACCT$ THEN \
ACTIVITY% = FALSE% :\
RETURN

GOSUB 3000 REM READ ACCT$ REC

ACTIVITY% = FALSE%

115

Section 4
Defining and Using Functions

A function is a named, isolated portion of a program that other parts of the program
can invoke to compute a value or perform some operation. To execute, a function
must be referenced by name. You cannot call a function with a GOSUB or GOTO
statement. There are only two ways to invoke a function:

• with a CALL statement
• in an expression

When a function's name is in an expression, the function returns a value that the
expression uses as if the function were a variable. Functions can have parameters that
are like variables whose values you specify in the function call.

COS, MATCH, and INP are examples of functions that are predefined in the CBASIC
language. You can define your own functions to perform tasks in a program that
predefined functions cannot perform. A user-defined function passes parameters to one
or more executable statements. The function name serves as a variable to pass a
computed value back to the calling statement. Once defined, you can call a user-defined
function any number of times in the program.

4.1 Function Names

A function name is a valid CBASIC identifier. However, only the first six characters
distinguish one function name from another. The function name identifies a function
and serves as a variable to hold the value that the function passes back to the calling
statement. The form of the function name determines which type of value the function
returns.

• Names for string functions end with $.
• Names for integer functions end with 0/0.
• Names for real number functions do not end with $ or 0/0.

117

4.1 Function Names. CBASIC Compiler Reference Manual

You must use a function name to define a function and to call a function from
another location in a program. The following examples are valid function names:

PROPER.FUNCTION.NAMES

TRUNCATE$

W12311'X.

4.2 Function Definitions

A function definition must occur in a program before making a function call. Use
the DEF statement to define a function. CBASIC supports two types of function def­
initions: single-line and multiple-line.

4.2.1 Single-line Functions

A single-line function performs computations that do not span more than one logical
line. You can accomplish more complex programming tasks with multiple-line func­
tions. Single-line function definitions use an equal sign followed by an expression. The
expression contains the actual process that the single-line function performs. The data
types in the expression must match the data type in the function name. Use the following
format when defining single-line functions:

DEF function.name [(formal parameters)] = expression

A formal parameter holds a place for an actual parameter that you specify in a
function reference. A formal parameter is either a string variable or a numeric variable;
it is never a constant. Formal parameters must have the same data type as the actual
parameters in the function reference. CBASIC considers formal parameters local to the
function. Local variables are independent of the rest of a program. CBASIC functions
pass parameters by value.

118

CBASIC Compiler Reference Manual 4.2 Function Definitions

The following examples show single-line function definitions:

DEF 25 = RND * 25.0

100 DEF CALC.HYPOT(SIDEltSIDE2)= \
SQR((SIDEl * SIDE1) + (SIDE2 * SIDE2»

DEF LEFT.JUSTIFYS(AStLEN%)=LEFTS(AS+BLNKSStLEN%)

4.2.2 Multiple-line Functions

Multiple-line function definitions contain data declarations and executable state­
ments. The function definition begins with a DEF statement and ends with a FEND
statement. You can use RETURN statements in the body of the function. Both RETURN
and FEND stop function execution, pass the function value, and send control back to
the statement following the calling statement. Use any number of RETURN statements,
but be sure one FEND statement appears last in a multiple-line function definition.
Use the following format when defining multiple-line functions:

DEF function.name [(formal parameters)]
data declarations

CBASIC statements

RETURN
FEND

119

4.2 Function Definitions CBASIC Compiler Reference Manual

The function reference assigns the value of the actual parameters to the formal
parameters in the function definition. All formal parameters and variables in a dec­
laration are local to the function. All labels defined in a function are local to the
function. The following two examples show multiple-line function definitions:

DEF GET.AMOUNT(CUST.NO%)
READ # CUSTOMER.INF; CUSTNO%, AMOUNT
GET.AMOUNT = AMOUNT

FEND

DEF AREA.CIR(DIA, MIN)
REAL AREA.CIR, DIA, MIN

IF DIA < MIN THEN \
RETURN \

ELSE RAD = 0/2
AREA.CIR = (R * 3.14159)A2
FEND

The following rules apply to multiple-line functions:

120

• Function definitions cannot be nested. However, a function can call another
function.

• COMMON statements cannot appear in a function definition.

• Functions cannot have GOTO statements that reference a line outside the function.

• A DIM statement in a function allocates a new array on each execution of the
function. Data stored in an array from a previous execution is lost. Arrays in
multiple-line functions are global to an entire program.

CBASIC Compiler Reference Manual 4.3 Function References

4.3 Function References

Reference user-defined functions in any CBASIC statement or expression. The CALL
statement can reference multiple-line functions only. The number of actual parameters
in the function reference must match the number of formal parameters in the function
definition. The function substitutes the current value of each actual parameter in the
reference statement for the formal parameters in the function definition. The following
are examples of function references:

300 PRINT FUNCTION(250t 1429)

CALL FUNCTION.NUMBER.ONE(WHOLESALEt RETAILt DIFF)

IF LENGTH'!.'.(IIINPUT DATAllt}{$tQ) < LIMIT'!.'. THEN
GOSUB 3000

WHILE FN.ALTITUDE(CURR.ALT%) > MINIMUM.SAFE
CURR.ALT%=INP(ALT.PORT%)

WEND

4.4 Public and External Functions

Multiple-line functions can compile separately to form individual program modules.
The PUBLIC and EXTERNAL keywords provide a method to access the same multiple­
line function from different modules.

To execute a multiple-line function from a different program module, declare the
function public in the definition. Enter the keyword PUBLIC after the list of formal
parameters in the DEF statement, as shown in the following example.

DEF function.name [(formal parameters)] PUBLIC
data declarations

CBASIC statements

FEND

121

4.4 Public and External CBASIC Compiler Reference Manual

The complete definition for the public function appears in one module. However,
any module that references a public function in another module must contain an
abbreviated definition of that function specified as external. An external function def­
inition does not contain the executable statement group. Other modules can reference
the public function in an expression or with a CALL statement. Enter the keyword
EXTERNAL after the list of formal parameters in the abbreviated definition, as shown
in the following example.

DEF function.name [(formal parameters)] EXTERNAL
data declarations

FEND
CALL function.name [(actual parameters)]

The link editor links the external function call to the public function for execution.
CBASIC does not check parameter data types between modules. Be sure that corre­
sponding parameter data types match. Parameter names do not have to match. How­
ever, the function names used in external functions must match the name of the cor­
responding public function.

End of Section 4

122

Section 5
Input and Output

CBASIC uses the operating system to control input and output for interaction between
programs, consoles or terminals, printers, and disk drives.

5.1 Console Input and Output

CBASIC reads input from the console one line at a time. Therefore, all CP/M line­
editing functions, such as CTRL-U and DELETE, remain in effect. CTRL-C entered
from the keyboard terminates a program but does not close files being accessed. Three
functions, CONCHAR%, INKEY, and CONSTAT%, use direct console input and
output. Use the following statements and predefined functions to input data from a
console device. Refer to Section 3 for more detailed descriptions of statements and
functions.

CI INPUT statements query the user for information during program execution.
You can enter any number of input values with an INPUT statement. You can
have a prompt message displayed if you desire.

• INPUT LINE works like an INPUT statement, but accepts only one variable
for data to be entered. All characters entered in response to INPUT LINE are
interpreted as one string.

• CONSTAT% is a predefined function that determines console status. The func­
tion returns a logical true value (-1) if a character is ready at the console, and
a logical false value (0) if a character is not ready.

• CONCHAR % is a function that waits for an entry from the keyboard
and returns an eight-bit ASCII representation of the character entered.
CONCHAR % echoes characters of ASCII decimal value greater than 31.

123

5.1 Console Input and Output CBASIC Compiler Reference Manual

The following CBASIC statements and predefined functions control console output.

• The CONSOLE statement restores printed output to the console device.

• The TAB predefined function moves the console cursor to a specified position
on the screen. TAB also works with printers. Use TAB only in the PRINT
statement.

• The POS predefined function returns the next available position on the console
screen to be printed.

5.2 Printing

CBASIC provides three statements to control output to a line printer.

• PRINT outputs data to a console or printer.
• LPRINTER directs all output PRINT statements to the line printer or list device.
• PRINT USING allows formatting of printed output to the console or printer.

5.3 Formatted Printing

The PRINT USING statement allows you to specify special formats for output data.
You can output formatted data to the console or line printer with CONSOLE or
LPRINTER. The PRINT USING # variation directs formatted output to a disk file.
Write a PRINT USING statement as follows:

PRINT USING format string. [#file number[,rec number];]
<expression list>

The format string is a model or image for the output. A format string contains data
fields and literal data. Data fields can be numeric or string type. Any character in the
format string that is not part of a data field is a literal character. Format strings cannot
be null string expressions. Table 5-1 describes characters that have special meanings
in format strings:

124

CBASIC Compiler Reference. Manual 5.3 Formatted Printing

Table 5-1. Special Characters in Format Strings

Character Meaning

single-character string field

B: variable-length string field

/ fixed-length string field delimiter

digit position in numeric field

** asterisk fill in numeric field

$$ float a $ in numeric field

decimal point position in numeric field

leading or trailing sign in numeric field

exponential position in numeric field

place comma every third digit before decimal point

\ escape character

The expression list tells which variables hold the data to format. Separate each
variable with a comma or semicolon. The comma does not cause automatic tabbing
as it does with unformatted printing. PRINT USING matches each variable in the list
with a data field in the format string. If there are more expressions than there are fields
in the format string, execution resets to the beginning of the format string.

While searching the format string for a data field, the type of the next expression in
the list, either string or numeric, determines which data field to use. For example, if
PRINT USING encounters a numeric data field while outputting a string, the statement
treats characters in the numeric data field as literal data. An error occurs if there is no
data field in the format string of the type required.

125

5.3 Formatted Printing CBASIC Compiler Reference Manual

5.3.1 String Character Fields

Specify a one-character string data field with an exclamation point,!. PRINT USING
outputs the first character of the next expression statement list.

For example,

F.NAME$=IILynn ll :M.NAME$ = IIMarion ll :L.NAME$= IIKobill
PRINT USING II!. !. &11; F.NAME$,M.NAME$,L.NAME$

outputs

L. M. Kobi

In this example, PRINT USING treats the period as literal data.

5.3.2 Fixed-length String Fields

Specify a fixed-length string field of more than one position with a string of characters
enclosed between a pair of slashes. The width of the field is equal to the number of
characters between the slashes, plus two. Place any characters between the slashes to
serve as fill. PRINT USING ignores fill characters for fixed-length string fields.

A string expression from the print list is left-justified in the fixed field and, if necessary,
padded on the right with blanks. PRINT USING truncates a string longer than the
data field on the right.

For example,

FOR1$ = liTHE PART REQUIRED IS I •• • 5 •••• 0 ••• • 5/ 11

PART.DESCRP$ = IIGLOBE VALVE, ANGLE II
PRINT USING FOR1$; PART.DESCRP$

outputs

THE PART REQUIRED IS GLOBE VALVE, ANG

Using periods and numbers between the slashes makes it easy to verify that the data
field is 16 characters long. Periods and numbers do not effect the output.

126

CBASIC Compiler Reference Manual 5.3 Formatted Printing

5.3.3 Variable-length String Fields

Specify a variable-length string field with an ampersand, &. This results in a string
output exactly as defined.

For example,

COMPANY$ = IISMITH INC. II
PRINT USING 11& &11; IITHIS REPORT IS FOR II ,COMPANY$

outputs

THIS REPORT IS FOR SMITH INC.

The following example shows how a string can be right-justified in a fixed-length
string field using a variable-length string field.

FLO. S'X, = 20
BLK$ = II
PHONE$ = 11408-849-3898 11
PRINT USING 11#&11; RIGHT$(BLK$ + PHONE$, FLO.S$)

outputs

408-849-3898

The preceding example uses the # as a literal character because the print list contains
only a string expression. A # can also indicate a numeric data field.

5.3.4 Numeric Data Fields

Specify a numeric data field with a pound sign, #, to indicate each digit required in
the resulting number. One decimal point can also be included in the field. Values are
rounded to. fit the data field. Leading zeros are replaced with blanks. When the number
is negative, PRINT USING prints a minus sign to the left of the most significant digit.
A single zero prints to the left of the decimal point for numbers less than one if you
provide a position in the data field.

127

5.3 Formatted Printing

For example,

>{ = 123.7SaG
y = -21.0
FOR$ = 11####.#### ###.# ###11

PRINT USING FOR$; X, X, X
PRINT USING FOR$; Y, Y, Y

outputs

123.7SaG
-21.0000

123.8
-21.0

12a
-21

CBASIC Compiler Reference Manual

Tell PRINT USING to print numbers in exponential format by appending one to
four up arrows, ", to the end of the numeric data field. For example,

X = 12.3aS
PRINT USING 11#.###"" II; H, _}-{

outputs

1.23SE 01 -.123E 02

PRINT USING reserves four positions for the exponent regardless of the number of
up arrows used in the field.

If one or more commas appear embedded in a numeric data field, the number prints
with commas between each group of three digits that precede the decimal point. For
example,

PRINT USING 11##,### II; 100, 1000, 10000

outputs

100 1 ,000 10,000

PRINT USING includes each comma that appears in the data field in the width of
the field. You need only one comma to obtain embedded commas in the output;
however, placing each comma in the data field at the specified position clarifies the
formatting statement.

128

CBASIC Compiler Reference Manual 5.3 Formatted Printing

For example, the following data fields produce the same results, except the width
of the first field allows only nine output digits. The second field allows ten digits.

:1*,##:1*#####

:1*,###,###,###

Commas do not print if you use the exponent option. In this case, PRINT USING
treats commas as pound signs, #.

You can use asterisk filling in a numeric data field by appending two asterisks to
the beginning of the data field. You can float a dollar sign by appending two dollar
signs to the beginning of the data field. Do not use the exponential format with either
asterisk filling or floating dollar signs. PRINT USING includes a pair of asterisks or
dollar signs in the count of digit positions available for the field. The asterisks or dollar
signs appear in the output if there is enough space. The dollar sign does not print if
the number is negative.

For example,

COST = 8742937.58
PRINT USING 1I**##t######.##

PRINT USING 1I$$##t######.##

II; COST, -COST
II; COST, -COST

outputs

**8t742,937.58
$8t742,937.58

*-8t742t937.58
-8t742t937.58

PRINT USING outputs a number with a trailing sign instead of a leading sign if the
last character in the data field is a minus sign. A blank replaces the minus sign in the
output if the number is positive. For example,

PRINT USING 11###-###".'.'''- II; 10, lOt -10, -10

outputs

10 100E-Ol 10- 100E-Ol-

129

5.3 Formatted Printing CBASIC Compiler Reference Manual

PRINT USING fixes the sign position as the next output position if a minus sign is
the first character in a numeric data fi~ld. If the number is positive, a blank prints
instead of the minus sign. For example,

PRINT USING "-#### II; 10, -10

outputs

10 10

If a number does not fit in a numeric data field without truncating digits before the
decimal point, a percent sign, %, precedes the number in the standard format. For
example,

x = 132.71
PRINT USING "##.# ###.#"; X,X

outputs

'X, 132.71 132.7

5.3.5 Escape Character

You can use a special format string character as literal data in a data field with the
escape character. A backslash, \ , signals PRINT USING to treat the next consecutive
character as a literal character. For example, a pound sign, #, can precede a number.
For example,

ITEM.NUMBER = 31
PRINT USING liTHE ITEM NUMBER IS\ ###"; ITEM.NUMBER

outputs

THE ITEM NUMBER IS #31

Two consecutive backslashes cause a one backslash to print as a literal character. An
escape character cannot be the last character in a format string.

130

CBASIC Compiler Reference Manual 5.4 File Input and Output

5.4 File Input and Output·

CBASIC uses the operating system file accessing routines to store and retrieve data
in disk files. All data is represented in character format using the ASCII code. Programs
can create, open, read, write, and dose data files with the following CBASIC statements
and functions. Each statement is described in more detail in Section 3.

• CREATE creates a new file on disk with no information in it. The CREATE
statement erases a preexisting file of the same name before creating the new
file.

• OPEN opens an existing disk file for reading or updating. If the file does not
exist, the program detects an end-of-file condition.

• IF END transfers program execution to a specified label when a file access
exception occurs.

• READ # accesses a specified file and assigns the data sequentially, field by field,
into specified variables. Data can also be accessed from a specified record.

• READ LINE reads one complete record of data from a file and assigns the
information to a string variable.

• PRINT # outputs data to a specified file and assigns the data sequentially into
fields from specified expressions. Data can also be output to a specified record.

• PRINT USING # outputs data to a specified file using formatted printing options.

• CLOSE doses disk files. The specified files are no longer available for input or
output until reopened.

• DELETE deactivates a file from processing and erases it from the disk directory.

• GET reads one byte of data from a specified disk file.

• PUT writes one byte of data to a specified disk file.

• SIZE returns the number of i-kilobyte blocks in a specified file.

• RENAME allows you to change the name of a disk file during program execution.

131

5.5 File Organization CBASIC Compiler Reference Manual

5.5 File Organization

CBASIC organizes information on a disk surface into three levels: files, records, and
fields.

• Files consist of one or more records.

• Records are groups of fields. Each record is delimited by a carriage return line­
feed.

• Fields are the individual data items. Each field in a record is delimited by a
comma.

CBASIC supports two types of data files on disk: stream and fixed.

5.5.1 Stream Files

Sequential or stream organization is performed on a strict field-by-field basis. The
PRINT # statement writes each field to the disk in a continuous stream. Each data
item uses only as much space as needed. Each PRINT # statement executed creates a
single record. Each variable used in the PRINT # statement creates a single field.
Individual record lengths vary according to the amount of space occupied by the fields.
There is no padding of data space. The following diagram shows a stream file composed
of three records.

RECORD 1

FILE.l RECORD 2

RECORD 3

"FIELD ONE", "FIELD TWO", "FIELD THREE" cr/lf I
"Field 1", " "Field 2", " "cr/lf I
111,222,3.3,444,5.5 crllf J

t"'IO::Il------ Record lengths vary ---------J.~I

Figure 5-1. Sequential File

Field three in record two is a null string. Commas serve as delimiters, but are
considered string characters when embedded in a pair of quotation marks. Quotation
marks are not considered string characters when embedded in a string. Quotation
marks are always considered as string delimiters in files.

132

CBASIC Compiler Reference Manual 5.5 File Organization

The following CBASIC program creates the stream file diagramed in Figure 5-1.

CREATE IIFILE.l 11 AS 1
A$ = FIELD ONEil
B$ = FIELD TWOII
C$ = FIELD THREE II
D$ = FIELD 111
E$ = FIELD 2"
F$ = II
G'X, = 111
H'X, = 222
I = 3.3
J'X, = aaa
K = 5.5

PRINT # 1 ; A$, B$, C$
PRINT # 1 ; D$, E$, F$
PRINT # 1 ; G 'X, , H'Xtf I , J'X, , K
CLOSE 1
END

The three PRINT statements correspond to the three records, and each variable
corresponds to a field.

When you access stream files, each field is read sequentially, one at a time, from the
first to the last. The READ # statement considers a field complete when it encounters
a comma, a terminating quotation mark for string fields, or a carriage return line-feed.
The following program reads the fields in FILE.1 sequentially and prints them on the
console screen.

IF END #18 THEN 100
OPEN IIFILE.l 11 AS 18

FOR I 'X, = 1 TO 11
READ #18; FIELDS$
PRINT FIELDS$

NE}-{T I 'X,
100 END

133

5.5 File Organization CBASIC Compiler Reference Manual

Any type of variable can be used in the READ # statement in a sequential access.
Executing the preceding program outputs the following display:

FIELD ONE
FIELD TWO
FIELD THREE
FIELD 1
FIELD 2

111
222
3.3
444
5.5

5.5.2 Fixed Files

Fixed files offer the advantage of random access, which is the ability to access any
record in a file directly. Record lengths are fixed. Data space between the end of the
last field and the carriage return line-feed is padded with blanks. The carriage return
line-feed occupies the last two bytes of the record. The number of bytes occupied by
the fields, field delimiters, and the carriage return line-feed cannot exceed the specified
record length. Figure 5-2 shows a fixed file composed of three records.

RECORD 1 "FIELD ONE", "FIELD TWO", "FIELD THREE" crllf

FILE.2 RECORD 2 "FIELD 1," "FIELD TWO"," " crll£

RECORD 3 111,222,3.3,444,5.s crll£

-- Record lengths fixed. .. - -
Figure 5-2. Relative File

134

CBASIC Compiler Reference Manual 5.5 File Organization

The same rules regarding commas, quotation marks, and null strings in stream files
apply to fixed files. The following program creates the fixed file diagramed in Figure
5-2.

CREATE FILE.2 RECL 40 AS 2
A$ = FIELD ONEil
B$ = FIELD TWO"
C$ = FIELD THREE"
D$ = FIELD 1
E$ = FIELD 2
F$ = II

G% = 11
H'X. = 222
I = 3.3
J'k = 444
K = 5.5

PRINT #2 ,1 ; A$, B$, C$
PRINT #2,2; D$, E$, F$
PRINT #2,3; G'X. , H'X" I , J 'X. , K
LOSE 2
END

To access a fixed file randomly, specify an actual record number. Enter the record
number in all PRINT # and READ # statements after the file identification number.
Separate the two numbers with a comma. In the following example, 5 is the record
number.

PRINT #2,5; VARIABLE1%, VARIABLE2%

135'

5.5 File Organization CBASIC Compiler Reference Manual

CBASIC locates each record on a randomly accessed file by taking the record number,
subtracting 1, and multiplying that difference by the record length. The result is a byte
displacement value for the desired record measured from the beginning of the file. The
record to be accessed must be specified in each READ # or PRINT # statement
executed. Each READ # and PRINT # statement executed accesses the next specified
record. The following program reads the first three fields from record three in FILE.2.

IF END #20 THEN 200
OPEN IIFIlE.2" REel 40 AS 20

READ #20,3; FIElDl$, FIElD2$, FIElD3
PRINT FIElDl$, FIElD2$, FIElD3

200 END

The data types of the variables in the READ # statement must match the data
contained in the fields being read. Executing the above program outputs the following
display on screen.

111 222

End of Section 5

136

ABS

AND

AS

ASC

Appendix A
CBASIC Compiler Reserved

Words

CBASIC Compiler Reserved Words

ERR LE PUBLIC STRING$

ERRL LEFT$ PUT SUB

ERROR LEN RANDOMIZE TAB

ERRX LET READ TAN

ATTACH EQ LINE READ ONLY THEN

ATN EXP LOCK REAL TO

BUFF EXTERNAL LOCKED RECL UCASE$

CALL FEND LOG RECS UNLOCK

CHAIN FLOAT LPRINTER REM UNLOCKED

CHR$ FOR LT REMARK USING

CLOSE FRE MATCH RENAME VAL

COMMAND$ GE MFRE RESTORE VARPTR

COMMON GET MID$ RETURN WEND

CONCHAR% GO MOD RIGHT$ WHILE

137

r:-:-

I , I

, :
~ 1<'

A Reserved Words CBASIC Compiler Reference Manual

CBASIC Compiler Reserved Words (continued)

CONSOLE GOSUB NE RND WIDTH

CONSTAT% GOTO NEXT SADD XOR

COS GT NOT SGN 0/0 CHAIN

CREATE IF ON SHIFT % DEBUG

DATA INITIALIZE OPEN SIN %E]ECT

DEF INKEY OR SIZE % INCLUDE

DELETE INP OUT SQR %LIST

DETACH INPUT PEEK STEP %NOLIST

DIM INT POKE STOP %PAGE

ELSE INT% POS STR$

END INTEGER PRINT STRING

End of Appendix A

138

Decimal

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Appendix B
Decimal-ASCII-Hex Table

Decimal-ASCII-Hex Table

ASCII Hex Decimal ASCII Hex Decimal ASCII

NUL 00 44 , 2C 88 X
SOH 01 45 - 2D 89 Y
STX 02 46 2E 90 Z
ETX 03 47 / 2F 91 [
EOT 04 48 0 30 92 \
ENQ 05 49 1 31 93]
ACK 06 50 2 32 94 "

BEL 07 51 3 33 95 -
BS 08 52 4 34 96 ,

..
HT 09 53 5 35 ·97 a
LF OA 54 6 36 98 b
VT OB 55 7 37 99 c
FF OC 56 8 38 100 d
CR OD 57 9 39 101 e
SO OE 58 : 3A 102 f
SI OF 59 ; 3B 103 g
DLE 10 60 < 3C 104 h
DCl 11 61 = 3D 105 i
DC2 12 62 > 3E 106 j
DC3 13 63 ? 3F 107 k
DC4 14 64 @ 40 108 I
NAK 15 65 A 41 109 m
SYN 16 66 B 42 110 n
ETB 17 67 C 43 111 0

CAN 18 68 D 44 112 P
CR 19 69 E 45 113 q
SUB lA 70 F 46 114 r
ESC IB 71 G 47 115 s
FS lC 72 H 48 116 t
GS ID 73 I 49 117 u

Hex

58
59
SA
5B
5C
5D
5E
SF
60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75

139

B Decimal-ASCII-Hex Table CBASIC Compiler Reference Manual

Decimal-ASCII-Hex Table (continued)

30 RS 1£ 74 J 4A 118 v 76
31 US lF 75 K 4B 119 w 77

,.,

32 SP 20 76 L 4C 120 x 78
33 ! 21 77 M 4D 121 y 79
34 /I 22 78 N 4£ 122 z 7A
35 # 23 79 0 4F 123 { 7B
36 $ 24 80 P 50 124 I 7C
37 % 25 81 Q 51 125 } 7D
38 & 26 82 R 52 126 7£
39 , 27 83 S 53 127 DEL 7F
40 (28 84 T 54
41) 29 85 U 55
42 * 2A 86 V 56
43 + 2B 87 W 57

End of Appendix B

, i

140

Appendix C
CBASIC to CBASIC Compiler

Conversion Aid

This conversion aid helps you convert your CBASIC programs to CBASIC Compiler.
When you compile your source code in CBASIC Compiler, pay close attention to all
error messages. This is the fastest way to determine any necessary changes. Most
programs recompile with no conversion. If any problems arise, call the Digital Research
Support Line (408-375-6262) for assistance.

In this appendix, CBASIC refers to the compiled/interpreted version of CBASIC, and
CBASIC Compiler refers to the compiled version of CBASIC defined in this manual.

C.l Subscripted Variables (Arrays)

CBASIC allows you to use a dimensioned variable name (an array) as a simple or
unsubscripted variable. CBASIC treats these as separate and distinct variables. CBASIC
Compiler does not allow a dimensioned variable without the array index.

CBASIC

DIM AI (20)

FOR II = 1 to 20
A'X. (1'%) = 0

NEXT U

AI = 100

CBASIC Compiler

DIM AI (20)

FOR I 'x. = 1 to 20
AI (U) = 0

NEXT U

A% = 100
(error message #36)

CBASIC Compiler issues error message #36 for the statement AO/o = 100 because
the statement uses an identifier as a simple variable that was previously used as a
subscripted variable.

141

C.l Subscripted Variable CBASIC Compiler Reference Manual

CBASIC CBASIC Compiler

AI = 100 AI = 100

DIM AI (20) DIM AI (20)

For II = 1 to 20
Al (II) =0

NEXT II

END

(error message #93)

For II = 1 to 20
AI <II) = 0

(error message #37)
NEXT II

CBASIC Compiler issues error message #93 for the statement DIM A % (20) because
a variable in a DIM statement is previously defined as other than a subscripted variable.
CBASIC Compiler issues error message #37 for the statement A % = 100 because an
identifier used as a subscripted variable was previously used as an unsubscripted variable.

To correct the error, change the unsubscripted variable to a different variable name
of the same type. Choose a new variable that differs from all other variable names in
your program.

C.2 FILE Statement

The FILE statement in CBASIC opens a file present on the referenced disk. The FILE
statement can also create a file of the name you specify. However, CBASIC Compiler
does not use the FILE statement. Use the OPEN, SIZE, and CREATE statements to
open and create files.

CBASIC

FILE NAME$

CBASIC Compiler

IF SIZE (NAME$) <> 0 \
THEN OPEN NAME$ AS FILE.NOX \
ELSE CREATE NAME$ AS FILE.NOI

In the CBASIC Compiler example, if there is a file NAME$, the file is opened as
usual. If there is no file NAME$, or the length of the file is zero (determined by the
SIZE statement), the IF statement passes control to the CREATE statement, which
creates the file NAME$. Both the OPEN and CREATE statements require a file reference
number (FILE.NO%). However, the FILE statement does not need a file reference
number.

142

CBASIC Compiler Reference Manual C.2 FILE Statement

When you convert a FILE statement, choose a file number that does not conflict
with any other file reference numbers already in your program. Remember to modify
the PRINT and READ statements that access the file to reflect the new file number.

C.3 SAVEMEM

The SA VEMEM statement, which executes routines written to the assembler in
CBASIC, has no meaning in CBASIC Compiler. The CBASIC Compiler (CB80) Lan­
guage Programming Guide and CBASIC Compiler (CB86) Language Programming
Guide tell how to use assembler routines and explain how to link the routines to
CBASIC Compiler programs.

C.4 CHAIN Statement

The CHAIN statement in CBASIC and CBASIC Compiler passes control from the
program executing in memory to the program selected in the CHAIN statement. The
CHAIN statement format is the same in both CBASIC Compiler and CBASIC.

CBASIC CBASIC Compiler

CHA I N <expression> CHA I N <expression>

The expression must evaluate to an unambiguous filename on the disk. If the filename
in the expression does not include the filetype, CBASIC assumes an .INT filetype;
however, CBASIC Compiler assumes an .OVL (overlay) filetype.

In CBASIC Compiler, the .OVL filetype is not the root of a chaining sequence. The
root program has a .COM filetype. If your program chains back to the original root
(.COM file) or a different root, the expression in the CHAIN statement must evaluate
to a filename with .COM filetype. A CBASIC Compiler program can chain to a .COM
file other than the one generated by the link editor.

143

C.S String Lengths CBASIC Compiler Reference Manual

C.s String Lengths

CBASIC Compiler allows string lengths up to 32K. CBASIC Compiler uses two bytes
to give this expanded string length; CBASIC uses one byte. To set strings to null in
CBASIC Compiler, see the Programming Guide.

If your program uses the SADD function with PEEK and POKE to pass a string to
an assembly language routine, you must change your program to accommodate the
two-byte length indicator in CBASIC Compiler.

CBASIC CBASIC Compiler

LEN% PEEK (SADD(STRING$)) LENX = (PEEK (SADD(STRING$)) AND 07FH \
END + PEEK (SADD(STRING$) + 1)) * 258

C.6 PEEK and POKE

The PEEK function in CBASIC and CBASIC Compiler returns the contents of the
memory location specified in the PEEK function call. Memory locations in CBASIC
Compiler might not contain the same information that CBASIC programs expect. You
might have to change the memory location your program is examining, or remove the
PEEK statement from your program.

The POKE statement behaves the same in CBASIC Compiler as it does in CBASIC.
However, the memory locations in CBASIC Compiler differ from the memory locations
in CBASIC. If your program contains a POKE statement to a location in a CBASIC
program, it might insert the value at the wrong address when used in a CBASIC
Compiler program. In particular, the statements,

POKE OllOH, 0
or
POKE 272, 0

used in CBASIC to adjust the console width, must be removed. Use the POKE statement
carefully because the actual location of code is determined by the link editor.

144

CBASIC Compiler Reference Manual C.7 FOR-NEXT Loops

C.7 FOR-NEXT Loops

When using FOR-NEXT loops in CBASIC, the NEXT statement can terminate more
than one loop. CBASIC Compiler does not allow this construct. You must use a separate
NEXT statement for each FOR statement that begins a loop.

CBASIC

FOR I'X.
FOR J%

TO 100
TO 100

, (statements)

NE~<T J'X, I 'X

CBASIC Compiler

FOR 1% 1 TO 100
FOR J'X. 1 TO 100

, (statements)

NEXT J'X,
NEl<T 1%

Also, CBASIC executes all statements in the FOR-NEXT loop at least once. CBASIC
Compiler executes the statements in a FOR-NEXT loop zero or more times, depending
on the values of the loop indexes. This is potentially troublesome. Examine the logic
of your programs, and make any necessary changes.

C.8 Console Width

To facilitate cursor addressing, CBASIC Compiler generates a carriage return only
upon executing a PRINT statement not terminated by a comma or semicolon. This is
analogous to setting the CBASIC console width to zero by a POKE to 272. CBASIC
automatically generates a carriage return when the console width has been exceeded.
Therefore, CBASIC programs that assume the cursor returns when the console width
is exceeded might not execute correctly in CBASIC Compiler.

145

C.9 FRE CBASIC Compiler Reference Manual

C.9 FRE

In CBASIC Compiler, FRE returns a binary value that represents· the number of
bytes of available memory. In CBASIC, the binary value represents a real value. Pro­
grams that use FRE must interpret negative values correctly, because CBASIC Compiler
arithmetic routines interpret binary values in excess of 32,767 as negative numbers.
In general, negative values indicate ample available memory.

The following statement can determine whether adequate memory is available.

IF CFRE > 0) AND CFRE < MIN.MEMORYI) THEN \
CALL LOW.MEMORY.WARNING

C.l0 READ and INPUT Statements for Integers

READ and INPlIT statements handle integers differently in the two languages. CBASIC
accepts all numeric values as real numbers, and then converts to integers if required.
CBASIC Compiler accepts integers directly.

CBASIC

DATA 10.7, lE2

READ AZ,6X

The values of A% and B%
after the READ are:

AI = 11 6% = 100

CBASIC Compiler

DATA 10.7, lE2

READ AI,61

The values of A% and B%
after the READ are:

AX = 10 61 =

With CBASIC Compiler, conversion stops at the first character not a part of a valid
integer.

146

CBASIC Compiler Reference Manual C.ll Functions and Variables

C.ll Function and Variable Names

CBASIC Compiler requires that function names, variables, and statement labels be
unique. In CBASIC, all functions must start with the letters FN, and labels must be
numeric constants. Thus, no problems should occur when you convert programs from
CBASIC to CBASIC Compiler. Remember that variables and arrays might conflict as
described in Section C.l.

C.12 Labels

CBASIC Compiler places all program labels, including unreferenced labels, in a
symbol table. CBASIC does not put unreferenced labels in the symbol table.

A label in a multiple-line function is local to the function. This is not the same in
CBASIC.

CBASIC

OEF FN.A
100 PRINT "HELLO"
FEND
GOTO 100

CBASIC Compiler

DEF FN.A
100 PRINT "HELLO"
FEND
GOTD 100
(error message #82)

CBASIC Compiler issues error message #82 because the label in a GOTO statement
is undefined. The label used in a function must be defined in that function.

C.13 Warning Messages

CBASIC Compiler produces no warning messages during the executiqn of a program.
All errors are fatal and execution terminates unless you use an ON ERROR GOTO
statement to trap the error.

147

C.14 New Reserved Words CBASIC Compiler Reference Manual

C.14 New Reserved Words

CBASIC Compiler incorporates new reserved words with some of the newly imple­
mented features. If your CBASIC programs use these words as variables, rename them
to a different variable name. The following is a list of reserved words unique to CBASIC
Compiler. Appendix A contains a complete list of all CBASIC Compiler reserved words.

ATTACH GET PUT

%DEBUG INITIALIZE READ ONLY

DETACH INKEY REAL

ERR INTEGER SHIFT

ERRL LOCK STRING

ERROR LOCKED STRING$

ERRX MOD UNLOCK

EXTERNAL PUBiIC UNLOCKED

End of Appendix C

148

Appendix D
Glossary

address: Location in memory.

ambiguous file specification: File specification that contains either of the Digital Research
wildcard characters, ? or *, in the filename, filetype, or both. When you replace char­
acters in a file specification with these wildcard characters, you create an ambiguous
filespec and can reference more than one file in a single command line.

applications program: Program that needs an operating system to provide an envi­
ronment in which to execute. Typical applications programs are business accounting
packages, word processing, and mailing list programs.

argument: Variable or expression value that is passed to a procedure or function and
substituted for the dummy argument in the function. Same as actual argument or
calling argument. Used interchangeably with parameter.

array: Data type that is a collection of individual data items of the same data type.
Term that describes a form of storing and accessing data in memory, visualized as
matrices. The number of extents of an array is the number of dimensions of the array.
A one-dimensional array is essentially a list.

ASCII: Acronym for American Standard Code for Information Interchange. ASCII is
a standard code for representation of the numbers, letters, and symbols that appear
on most keyboards.

assembler: Language translator that translates assembly language statements into
machine code.

assignment statement: Statement that assigns the value of an expression on the right
side of an equal sign to the variable name on the left side of the equal sign.

back-up: Copy of a file or disk made for safekeeping, or the creation of the file or
disk.

binary: Base two numbering system containing the two symbols zero and one.

149

D Glossary CBASIC Compiler Reference Manual

bit: Common contraction for binary digit. Switch in memory that can be set to on
(1) or off (0). Eight bits grouped together comprise a byte.

buffer: Area of memory that temporarily stores data during the transfer of information.

byte: Unit of memory or disk storage containing eight bits.

call: Transfer of control to a computer program subroutine.

chain: Transfer of control from the currently executing program to another named
program without returning to the system prompt or invoking the run-time monitor.

code: Sequence of statements of a given language that make up a program.

command: Instruction or request for the operating system or a system program to
perform a particular action. Generally, a Digital Research command line consists of a
command keyword, a command tail usually specifying a file to be processed, and a
carriage return.

common: Variables used by a main program and all programs executed through a
chain statement.

compiler: Language translator that translates the text of a high-level language into
machine code.

compiler directive: Reserved words that modify the action of the compiler.

compiler error: Error detected by the compiler during compilation; usually caused
by improper formation of language statement.

compiler toggle: Switch that modifies the output of the compiler.

concatenate: Join one string to another or one file to another.

concatenation operator: Symbol peculiar to a given language that instructs the com­
piler to combine two unique data items into one.

console: Primary input/output device. The console consists of a listing device such as
a screen and a keyboard through which the user communicates with the operating
system or the applications program.

constant: String or numeric value that does not change throughout program execution.

150

CBASIC Compiler Reference Manual D Glossary

control character: Nonprinting character combination that sends a simple command
to the operating system or applications program. To enter a control character, press
the control (CTRL) key on your terminal and strike the character key specified.

control statement: Language statement that transfers control or directs the order of
execution of instructions by the processor.

cursor: One-character symbol that can appear anywhere on the video screen. The
cursor indicates the position where the next keystroke at the console will have an effect.

data: Information; numbers, figures, names, and so forth.

data base: Large collection of information, usually covering various aspects of related
subject matter.

data file: Nonexecutable file of similar information that generally requires a command'
file to process it.

data structure: Mechanism, including both storage layout and access rules, by which
information can be stored and retrieved in a computer system. Data structures can
reside in memory or on secondary storage. System tables such as symbol tables, matrices
of numerical data, and data files are examples of data structures.

data type: Class or use of the data; for example, integer, real, or string.

debug: Remove errors from a program.

default: Values, parameters, or options a given command assumes if not otherwise
specified.

delimiter: Special characters or punctuation that separate different items in a com­
mand line or language statement.

dimension: Refers to the number of extents of an array. A one-dimensional array is
essentially a list of the elements of the array. A two-dimensional array can be visualized
as a matrix of rows and columns of storage space for the elements of the array. A
three-dimensional array can be thought of as a geometric solid having volume, and so
forth.

151

D Glossary CBASIC Compiler Reference Manual

directory: Portion of a disk that contains entries for each file on the disk. In response
to the DIR command, CP/M and MP/M systems display the file specifications stored
in the directory.

disk, diskette: Magnetic media used to store information. Programs and data are
recorded on the disk in the same way that music is recorded on a cassette tape. The
term diskette refers to smaller capacity removable floppy diskettes. The term disk can
refer to a diskette, a removable cartridge disk, or a fixed hard disk.

disk drive: Peripheral device that reads and writes on hard or floppy disks. CP/M
and MP/M systems assign a letter to each drive under their control.

drive specification: Alpha character A through P followed by a colon that indicates
the CP/M or MP/M drive reference for the default or specified drive.

editor: Utility program that creates and modifies text files. An editor can be used to
create documents or code for computer programs.

element: Individual data item in an array.

executable: Ready to run on the processor. Executable code is a series of instructions
that can be carried out on the processor. For example, the computer cannot execute
names and addresses, but it can execute a program that prints names and addresses
on mailing labels.

execute a program: Start a program running .. When the program is executing, a
process is executing a sequence of instructions.

expression: Algebraic combination of variables, constants, operators, and function
references that evaluates to an integer, real, or string value.

FCB: File Control Block. Structure used for accessing files on disk. Contains the drive,
filename, filetype, and other information describing a file to be accessed or created on
the disk.

field: Portion of a record; length and type are defined by the programmer. One or
more fields comprise a record.

file: Collection of related records containing characters, instructions or data; usually
stored on a disk under a unique file specification.

152

CBASIC Compiler Reference Manual ·D Glossary

file number: Unique identification number you assign to a file with the CREATE or
OPEN statement. File numbers can be any numeric expression. If the expression eval­
uates to a real number, it converts to an integer. File numbers range from 1 to the
current implementation limit for the number of files accessible at one time.

filename: Name assigned to a file. The filename can include 1 to 8 alpha, numeric,
and/or some special characters. The filename should tell something about the file.

filetype: Extension to a filename. A filetype is optional, and can contain from 0 to 3
alpha, numeric, and/or some special characters. The filetype must be separated from
the filename by a period. Certain programs require that files to be processed have
specific filetypes.

file access: Refers to methods of entering a file to retrieve the information stored in
the file.

file specification: Unique file identifier. A Digital Research file specification includes
an optional drive specification followed by a colon, a primary filename of 1 to 8
characters, and an optional period and filetype of 0 to 3 characters. Some Digital
Research operating systems allow an optional semicolon and password of 1 to 8
characters following the filename or filetype. All alpha and numeric characters and
some special characters are allowed in Digital Research file specifications.

fixed: Type of file organization used when data is to be accessed randomly-not in
sequential order. Refers generally to the nonvarying lengths of the records composing
the file.

floating point: Value expressed in decimal notation that can include exponential
notation; a real number.

floppy disk: Flexible magnetic disk used to store information. Floppy disks are man­
ufactured in 5 114- and 8-inch diameters.

flowchart: Graphic diagram that uses special symbols to indicate the input, output,
and flow of control of part or all of a program.

flow of control: Order of the execution of statements in a program.

formal parameter: Holds a place for an actual parameter that you specify in a user­
defined function reference.

153

D Glossary CBASIC Compiler Reference Manual

format: System utility that writes a known pattern of information on a disk so a
given hardware configuration can properly support reading and writing on that disk.

formatted printing: Output specifically designed in a certain pattern and achieved
through particular coded language statements.

fragmentation: Division of storage area in a way that causes areas to be wasted.

function: Subroutine to which you can pass values and which returns a value. Useful
when the same code is required repeatedly, because the program can call the function
at any time.

global: Relevant throughout an entire program.

hex file: ASCII-printable representation of a code or data file in hexadecimal notation.

hexadecimal notation: Notation for the base 16 number system using the symbols 0,
1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F to represent the sixteen digits. Machine
code is often converted to hexadecimal notation because it can be more easily understood.

high bound: Upper limit of one dimension of an array.

high-level language: Set of special words and punctuation that allows a programmer
to code software without being concerned with internal memory management.

identifier: String of characters used to name elements of a program, such as variable
names, reserved words, and user-defined function names. Commonly used synony­
mously with variable name.

include: Call an external file into the code sequence of a program at the point where
the include statement is executed.

initialize: Set a disk system or one or more variables to initial values.

1/0: Abbreviation for input/output.

input: Data entered to an executing program, usually from an operator typing at the
terminal or by the program reading data from a disk.

instruction: Set of characters that defines an operation.

154

CBASIC Compiler Reference Manual D Glossary

integer: Positive or negative nonexponential whole number that does not contain a
decimal point.

interface: Object that allows two independent systems to communicate with each
other, as an interface between the hardware and software in a microcomputer.

intermediate code: Code generated by the syntactical and semantic analyzer portions
of a compiler.

interpreter: Computer program that translates and executes each source language
statement before translating and executing the next one.

ISAM: Abbreviation for Indexed Sequential Access Method.

key: Particular field of a record on which the processing is performed.

keyword: Reserved word with special meaning for statements or commands.

kilobyte: 1024 bytes denoted as 1K. 32 kilobytes equal 32K. 1024 kilobtyes equal
one megabyte, or over one million bytes.

label: Constant, either numeric or literal, that references a statement or function.
Labels in the main executable block of a program must be unique. All labels in a
function must also be unique. However, a label in a function can be the same as a
label in the main executable block of a program or in another function.

linker: System software module that connects previously assembled or compiled pro­
grams or program modules into a unit that can be loaded into memory and executed.

linked list: Data structure in which each element contains a pointer to its predecessor
or successor (singly-linked list) or both (double-linked list).

list device: Device, such as a printer, onto which data can be listed or printed.

listing: Output file created by the compiler that lists the statements in the source
program, the line numbers it has assigned to them, and possibly other optional information.

literal data: Verbatim translation of characters in the code, such as in screen prompts,
report titles, and column headings.

load: To move code from storage into memory for execution.

155

D Glossary CBASIC Compiler Reference Manual

local variable: Relevant only in a specific portion of a program, such as in a function.

logged-in: Made known to the operating system, in reference to drives. A drive is
logged-in when it is selected by the user or an executing process.

logical: Representation of something, such as a console, memory, or disk drive, that
might or might not be the same in its actual physical form. For example, a hard disk
can occupy one physical drive, and yet you can divide the available storage on it to
appear to the user as if there were several different drives. These apparent drives are
the logical drives.

logical device: Reference to an 110 device by the name or number assigned to the
physical device.

logical expression: Expression that evaluates to either true or false.

logical operator: NOT, AND, OR, and XOR.

lower bound: Lower limit of one dimension of an array.

machine code: Output of an assembler or compiler to be executed directly on the
target processor.

machine language: Instructions directly executable by the processor.

memory: Storage area in and/or attached to a computer system.

microprocessor: Silicon chip that is the CPU of the microcomputer system.

mixed mode: Combination of integer, real or numeric, string values in an expression.
Mixed string and numeric operations are generally not allowed in high-level languages.

mnemonic operator: Alphabetical symbol for algebraic operator: LT, LE, GT, GE,
NE, and EQ.

module: Section of software having well-defined input and output that can be tested
independently of other software.

multiple-line function: Function composed of a function definition statement and one
or more additional statements.

numeric constant: Real or integer quantity that does not vary in the program.

156

CBASIC Compiler Reference Manual D Glossary

numeric variable: Real or integer identifier to which varying numeric quantities can
be assigned during program execution.

null string: String that contains no character; essentially an empty string.

object code: Output of an assembler or compiler that executes on the target processor.

open: System service that informs the operating system of the manner in which a
given resource, usually a disk file, is intended to be used.

operating system: Collection of programs that supervises the execution of other pro­
grams and the management of computer resources. An operating system provides an
orderly input/output environment between the computer and its peripheral devices,
enabling user programs to execute safely.

operation: Execution of a piece of code.

operator: Symbol that represents an arithmetic operation or comparison such as +,
-, =, or <.

option: One of a set of parameters that can be part of a command or language
statement. Options are used to modify the output of an executing process.

output: Data that the processor sends to the console, printer, disk, or other storage
media.

parameter: Value supplied to a command or language statement that provides addi­
tional information for the command or statement. Used interchangeably with argument.
An actual parameter is a value that is substituted for a dummy or formal argument in
a given procedure or function.

peripheral device: Devices external to the CPU. For example, terminals, printers, and
disk drives are common peripheral devices that are not part of the processor, but are
used in conjunction with it.

pointer: Data item whose value is the address of a location in memory.

primitive: Most basic or fundamental unit of data such as a single digit or letter.

process: Program that is actually executing, as opposed to being in a static state of
storage on disk.

157

D Glossary CBASIC Compiler Reference Manual

program: Series of specially coded instructions that performs specific tasks when
executed on a computer.

prompt: Characters displayed on the input terminal to help the user decide what the
next appropriate action is. A system prompt is a special prompt displayed by the
operating system, indicating to the user that it is ready to accept input.

random access: Method of entering a file at any record number, not necessarily the
first record in the file.

random access file: File structure in which data can be accessed in a random manner,
irrespective of its position in the file.

random number: Number selected at random from a set of numbers.

real number: Numeric value specified with a decimal point; same as floating-point
notation.

record: One or more fields usually containing associated information in numerical
or textual form. A file is composed of one or more records and generally stored on
disk.

record number: Position of a specific record in a fixed-length file, relative to record
number 1. A key by which a specific record in a fixed file is accessed randomly.

recursive: Code that calls itself.

relational operator: Comparison operator. A relational operator states a relationship
between two expressions. The following symbols are CBASIC relational operators: LT,
LE,NE,EQ,GT, GE, EQ.

reserved word: Keyword that has a special meaning to a given language or operating
system.

return value: Value returned by a function.

row-major order: Order of assignment of values to array elements in which the first
item of the subscript list indicates the number of rows in the array.

run a program: Start a program executing. When a program is running, the micro­
processor chip is executing a series of instructions.

158

CBASIC Compiler Reference Manual D Glossary

run-time error: Error occurring during program execution.

run-time monitor: Program that directly executes the coded instructions generated
by a compiler/interpreter.

sequential access: Type of file structure in which data can only be accessed serially,
one record at a time. Data 'can be added only to the end of the file and cannot be
deleted. An example of a sequential access media is magnetic tape.

source program: Text file that is an input file for a processing program, such as an
editor, text formatter, assembler, or compiler.

statement: Defined way of coding an instruction or data definition using specific
keywords in a specific format.

storage: Place for keeping data temporarily in memory or permanently on disk.

stream organization: Type of file organization used when data is to be accessed
sequentially. Can contain variable length records.

string constant: Literal data, as in a screen prompt, column heading, or title of a
report.

string variable: Identifier of type string to which varying strings can be assigned during
program execution.

subroutine: Section of code that performs a specific task, is logically separate from
the rest of the program, and can be prewritten. A subroutine is invoked by another
statement and returns to the place of invocation after executing. Subroutines are useful
when the same sequence of code is used more than once in a program.

subscript: Integer expression that specifies the position of an element in an array.

subscript list: Numeric value appended to a variable name that indicates the number
of elements in each dimension in the array of that name. Each dimension must have
a value in the subscript list indicating the number of elements for which to allocate
storage space.

syntax: Rules for structuring statements for an operating system or programming
language.

159

D Glossary CBASIC Compiler Reference Manual

toggle: Switch enabled by a special code in the command line that modifies the output
of the executing program.

trace: Option used for run-time debugging. The trace option generally lists each line
of code as it executes to enable the programmer to note where a problem occurs.

upward-compatible: Term meaning that a program created for the previously released
operating system or compiler runs under a later release of the same software program.

user-defined function: Set of statements created and given a function name by the
user. The function performs a specific task and is called into action by referencing the
function by name.

utility: Tool; a program or module that facilitates certain operations, such as copying,
erasing, and editing files, or controlling the cursor positioning on the video screen from
within a program. Utilities are created for the convenience of programmers and appli­
cations operators.

value: Quantity expressed by an integer or real number.

variable: Name to which the program can assign a numerical value or string.

variable length: Usually refers to records, where each record in a file is not necessarily
the same length as another.

variable name: Same as variable.

wildcard characters: Special characters, ? and *, that can be included in a Digital
Research filename and/or filetype to identify more than one file in a single file specification.

End of Appendix D

160

A

algebraic operators, 11, 12
AND operator, 11, 12
arithmetic operators, 11, 12
array, 5

physical storage area of, 10
referenced, 10
variables, 9-10

asterisk fill, 129

B

backslash, 2
balanced parentheses, 11
BAS files, 1
binary constant, 9
bounds checking, 10
byte displacement value, 136

c
CLOSE, 131
CMD files, 1
colon, 3
COM files, 1
commas embedded, 128
comments, 3
COMMON statement, 120
concatenation operator, 12
CONCHAR % function, 123
console input and output, 123
CONSOLE statement, 124

Index

constants, 5, 11
CONSTAT% function, 123
continuation character, 2
control characters, 7
CREATE statement, 131

D

data fields, 124
data files

fixed, 132, 134
stream, 132, 133

data types, 5
decimal-ASCII-hex table, 139
declaration group, 61, 91, 106
declaration statement, 61, 91, 106
DEF statement, 118
default data type, 61, 91, 106
DELETE,131
delimiters, 132
DIM statement, 120
dimension, 10

E

EQ operator, 11
ERRX function, 41
escape character, 130
exponent, 8
exponential notation, 8
expressions, 11

list, 125
extended error code, 41

F

FEND statement, 119
fields, 132
file organization, 132
fixed files, 134

random access to, 134
fixed format, 8
fixed-length string field, 126
floating-point, 9
formal parameters, 118
function,S, 117

G

definition, 118
names, 117
references, 121

GE operator, 11
GET function, 48, 131
GOTO statement, 120
GT operator, 11

H

hexadecimal constant, 9
hierarchy of operators, 11
high-level language features, 1

I

identifier, 5, 10
IF END, 131
individual record lengths, 132
initialize, 9
INPUT statement, 123
INPUT LINE statement, 123
integer, 5, 8, 9

constants, 8, 9
INTEGER statement, 61

162

L

LE operator, 11, 12
leading sign, 129
library, 1
line numbers, 2
line-editing functions, 123
literal link editor, 1

character, 127
data, 124

local variables, 118
logical operators, 11-12
LPRINTER, 124
LT operator, 11, 12

M

mantissa, 8
memory fragmentation, 107
minus sign, 129
mixed-mode expression, 12
mnemonic relational operators, 12
multiple statements, 3
multiple-line function, 119

N

name, 5
NE operator, 11
nested functions, 120
NOT operator, 11, 12
numbers

integer, 8
real, 8

numenc
constants, 5, 9
data field, 125, 127

o

ON ERROR, 41
OPEN statement, 131
operators hierarchy of, 11
OR operator, 11, 12
overflow, 14

p

POS predefined function, 124
power operator, 11-12
PRINT, 82
PRINT #,85
PRINT statement, 108, 124
PRINT USING, 83

variation, 124
printing, 124

formatted, 124
PUT statement, 86, 131

Q

quote, 7

R

RANDOMIZE statement, 87
READ,88
READ #,89
READ # LINE, 90
real

constants, 8
numbers, 5, 8, 9, 13

REAL statement, 91
record number, 135
records, 132
REL files, 1

relational operators, 11, 12
REM,92
RENAME, 93
RESTORE, 94
RETURN,95
RIGHT$,96
RND, 97

s
SADD, 98
SGN,99
SHIFT, 100
SIN, 101
single-line f~mction, 118
SIZE, 131
SIZE function, 102
source programs, 1
spaces, 3
SQR function, 103
statement labels, 2
STOP statement, 104
STR$ function, 105
stream

file, 132
organization, 132

string, 7
constants, 7
data field, 125
length, 7
variables, 9-12, 113

STRING statement, 106
STRING$ function, 107
strings, 5
subscript list expressions in, 10
subscripted variables, 10, 113

163

T

TAB function, 108
TAN function, 109
trailing sign, 129

u
UCASE$ function, 110
UNLOCK function, 111
up arrow, 128
user-defined functions, 117

v
VAL function, 112
variable-length string field, 125
variables, 5, 9, 11, 12
V ARPTR function, 113

w
WEND statement, 114
WHILE statement, 115

x

XOR operator, 11, 12

$

$, 5, 117
floating, 129

164

%, 5, 117

:,3

