HEWLETT-PACKARD

P 82900A CP/M” System
Reference Manual

HP-86/87

-l A

2

%473, 8

]

7844.5

74,5212

RN

(/A caciaro

HP 82900A CP/M System
Reference Manual

HP-86/87

June 1982

Reorder Number

82900-90001

Printed In U.S.A. ©Hewlett-Packard Company 1982

N

CONTENTS

Section Page

=

GENERAI. INFORMATION

Introduction ceeeeceececeecccessocessvesscsscecscssscncsccncens
CP/M DocUmeNtation ceeeeeccceccscsesccscosccocansccsseansscsses
HP 82900A CP/M SYSLEM ceeecccesoscssccsvsscscsososcsssoccoscscscasess
Bootstrap Loading ecceeececsescesscscccssascescssccsossccccscosss
The CP/M Operating SYSteM eeeccecccsscscccccecccocsccocscescccensse
CP/M COMMANGAS ceeosescsocssoscscsnscssccscscossoccccsssnssossesseasse
Reference Manual Organization ..ceeeeeeccscscecsccsccscscccccacane
Entering CP/M COMMANAS eeeessecsassescccsvsosscsssssscssccccccnce
The PIP COmMMANA ccceeeceocscsscosscccccscscsscascsnscassscacances
The STAT COMMANG ccceveoscocccscsscacscosscsccsacsccesscccscnoesse
Batch Job ProcesSsSing ceeeeecececesrecssccesssosssescsscsocccaccns

F‘F‘F‘k‘h‘T‘h‘k‘h‘F‘k‘
N 00 ~J D WN

N~

HEOOJOAUTEHEWN -

= xR

o R e b b e
] [] [] []
[T |

N

CP/M INTERNAL ORGANIZATION

Memory Organization 0 600000 BC SO 0L LLEBC00 0000000 CEEOLEECESOSSOENNOSES 2_1

Fms S5 5 000000600 000005000 QS0P TOOLII OO O LSRN ENLOOEOIOIERNRPIOGEOCOEDNIDOSLEGIEES 2—3

CCP oooo.;.'.ooooouc..oo.ooo.oo.ooooo..o..oo.oo.o...oo.ot'.coooo 2_3

TPA ® & 0 000000800000 ST OO GV OO0 GG 0000 GO0 E 0000 000C000CEsESEDN 2-4

Base Page ® 5 0000 0006000000600 00060060000 000000000060 0000068000000 000O 2-4

HOW the CCP Functions ® O 5 6600900000000 OE0OO0000ONELIOIOGEOGIOEPOPEPOSEOENIOGESIOEOCEOOE 2—5
Transient Programs ® 0 0 0000000008 SS LS 000N PC 000 ELLOEOIOEOEOERNOESIOEOEES 2—6

DNDNNNDDDDNOND
.
NoO b wN -

w

CP/M FILE SYSTEM ORGANIZATION

File REfErENCES teveeecerecsscscccccsccocsosccccsnssssscncssscsss
File StrUCLUIE ceceeesccesveccccacccccccccsssssccascossosscnsces
File ACCESS teesecctossesesessccccssscacscccssoccscscscssssosscess
File System OVErvVIeW .ceceeeccesccecscceccccccccccscccoceconcess
File Control BlOCK cevecececcccccocccccccccossonsssoscosnnoscesnse
DiSC DireCtorY ceeeceecccececcceescsscassssocsoccccccasosconncones
Default FCBs and the CCP .icececcccessccccccscoccccccccansnseas
FCB EXGMPle sececccccocccccacosssssssesassscsscsscsocsccsascscssscsss

L]

L] L]

OO bdWwN -
[

WO JIdWNN -

Wwwwwwww
.
uwwwc.iowww

(-8

SYSTEM FUNCTION CALLS

IntrOdUCtion ® 80 0600000 00000000000 0000000000 00P0CESORECOIEOPIOEOOREOEORIEOEE 4-1
Accessing Funqtion Calls ® 0 0000000000000 CE LSS SOOL OSSP ESOSSICIEOEOSEDLIE 4-2
Extended System Function Calls ® O 0 00 0608 0000 00000000000 CILNIONINOSISS 4_47

b o
L]
W N =

iii

5 BIOS ROUTINES

5.1 IntrOdUCtion ® 5 € 08 0000800000000 00000 08P P0OCLLCPLNELLIOEENLIEESIOEOIETSITISIEOESN 5
5.2 BIOS Entry POintS ® 6 0 060000 0600000008000 008000000 000000000LGERLIEOISEIOGOS 5—
5.3 5

DiSC Tables ® 0 00608000 0L NP0 B E 000000000000 EN BSOSO OBOCLILIOEROLEOEDINOETTIOES

S

6 THE CP/M TEXT EDITOR

1 INtroduction .iceececessessscccsscssssssssosssssccssscsssnssassse 60—l
2 Memory IMAJE ceecccssesscscssscsssssssscscosssossscsssossnssnsscse O—2
3 ED Commands © 00 80 0060000000600 006000000 06060006000 0006000060600000OCOCIEGOIOIEES 6—3
4 Sample ED SeSSIiON ceeeecoscscccoccssccssssoscesscsccssscssssscces 0—1

~

ASSEMBLY LANGUAGE UTILITIES

1 Introduction tO ASM ..eeececsesssscaccscssccscsscscsscssssssscscas /=1
2 Using the ASSembler ..ceecececscccccscsccscsossccsssssscsscsssccss /-1
3 Assembly Language Programming .eceecesccecsscocsccscccsassscssseces /=3
4 Assembler DirectiveS ceeeesccscscsocscsccscssscssoscscoscscccscecs /-1
5 Operation COAeS ceeeeccsnscsvscsosssscscsscscsocsssssocccsncscsnss /-1
6 Assembler EXeCUtION tceeeececscccscsccccsscecscscssrscccsssnnnses /—19
7 Error MeSSAJeS .ceeecccecccscoscccoscsssssscsscscssccscsscscsccccccccs /=20
8 The LOAD COMMANA ceeoesccocssscscscscscssrssosssscscssssssassssses /=23
9 The DUMP COMMANA ceceecescscscosssscsssscsscsssossscsssccscsssscsaas 723
16 Introduction tO DDT ceeeecececccsscoscsscscsscccscscacsocsscscsces /—23
11 Starting DDT seeccccocsccccssscasncscscsccssocnsosscsssossssnsanes /=24
7.12 USING DDT ceeccccosscscsccscscscsascsacssscscsccscscscscscsscscnssscsacnsee /=24
7.13 DDT COMMANAS ceeeessssnscososcoscscsssscscsscssssssscscscsnssasess 1—24
7.14 Implementation NOtES .eeecesvecssscsccsssesscosnsscsscccssssenscsss /=33
7.15 The SAVE COmMMANA ceeeeesoscscscsscscscsosssascsscscsssassscscscssescse /=33

Appendix A: DISC FILE ORGANIZATION
Appendix B: CP/M KEYBOARD FUNCTIONS
Appendix C: ASCII CHARACTER CODES
Appendix D: CP/M KEYCODES

Appendix E: CURSOR CONTROL CODES
Appendix F: CPU REGISTERS

Appendix G: CPU INSTRUCTION SET
Appendix H: CP/M ERROR MESSAGES
Appendix I: ASM ERROR MESSAGES

Appendix J: ANNOTATED BIBLIOGRAPHY

iv

Section
I

GENERAL INFORMATION

1.1 Introduction

CP/M or Control Program for Microcomputers is an operating system developed
by Digital Research, Inc. for wuse with 8080, 8¢85, or 2z-80 based
microcomputers. CP/M systems are available for several types of
microcomputers using 5-1/4-inch and 8-inch flexible disc drives. Some of
the CP/M system routines can be applied universally to systems based on the
8080, 8085, or Z-80 microprocessor. Other parts of CP/M must be customized
in order to function with a specific type of microcomputer. The HP 829¢¢A
CP/M System is an implementation of CP/M for the HP-86/87 Personal Computer
and is designed to operate with either 5-1/4-inch or 8-inch, HP-formatted,
flexible discs.

1.2 CP/M Documentation

In order to meet the needs of a widely varying audience, from the beginner
to the experienced CP/M user, three manuals are provided with your CP/M
system. Each has a different application and assumes a different level of
CP/M experience. Before reading about or attempting to use your CP/M
system vyou should be familiar with the operation of the HP-86/87.
Installation and "getting started" instructions are presented in your
computer's introductory manual, and a complete discussion of BASIC
programming is presented in your computer's operating and programming
manual.

The CP/M documentation provided with your system includes:

o Introduction to the HP 82949¢A CP/M System: The introductory
manual 1is provided for the user with no prior experience with
CP/M, and those who intend to use their system primarily for
operating prepackaged software. Included, are instructions for
installing the CP/M plug-in module and "booting-up" the CP/M
system, a discussion of the CP/M built-in commands, and a look at
some other CP/M utilities.

1-1

Section 1: General Information

o HP 829f4¢A CP/M System Reference Manual: The reference manual is
designed for the audience of experienced CP/M users, and provides
the detailed information necessary for program development. This
manual includes a discussion of the CP/M transient commands,
internal organization, file system, and other technical
information relevant to programming. This manual is, in itself,
not a complete guide to programming with CP/M. A bibliography is
provided in appendix J which 1lists other CP/M references,
including sources for assembly language programming.

o HP 8299@PA CP/M System Pocket Guide: The pocket guide provides a
quick reference to the CP/M system details, in condensed form, for
the experienced programmer or user.

In addition to these manuals, there are several books and user's guides
which can provide you with additional information about CP/M. Some
selected references are listed in appendix J.

1.3 HP 829¢90A CP/M System

Your CP/M system comprises a plug-in module and an associated 5-1/4-inch
disc.

The CP/M Module

The central component of the module is a Z-8¢A microprocessor, which takes
control of your computer while operating in "CP/M mode." Additional
components include 64K bytes of RAM, a 2K "boot"™ ROM, and interfacing
circuitry. CP/M occupies approximately 8K bytes of RAM, leaving 56K bytes
of memory available to the user.

The CP/M Disc

The CP/M disc is HP formatted, and contains a copy of CP/M Version 2.2,
modified for your computer. Also on the disc 1is a binary program named
"Cp/M", which enables your computer to exchange information with the z-8ga,
and a BASIC autostart program which specifies the pagesize and printer
address, and loads the binary. An 8-inch floppy disc is not provided,
although the CP/M system is compatible with this size disc. Refer to
Introduction to the HP 829@9¢A CP/M System for instructions about copying
the CP/M system from a 5-1/4-inch disc to an 8-inch disc.

1-2

/\

Section 1l: General Information

5-1/4-Inch Disc Format

The 5-1/4-inch HP disc is initially formatted in LIF (Logical Interchange
Format). The LIF directory is only one sector long, and includes three
entries. The first entry is a large data file named "CP/MSYS" which
includes the CP/M operating system, the CP/M directory, and the CP/M user's
file space. This data file must not be purged or written to, or the entire
CP/M contents of the disc will be lost. As a precaution, do not attempt to
store HP BASIC programs on the CP/M disc, or CP/M programs on an HP BASIC
disc. In other words, keep your CP/M and BASIC discs labeled, and in
separate locations.

The second directory entry is a BASIC autostart program used to bootstrap
the CP/M system. The third directory entry is the binary program that runs
in your computer while CP/M runs in the module. A detailed sector map for
the 5-1/4-inch disc is provided in appendix A.

8-Inch Disc Format

Your system is compatible with an 8-inch disc, although one is not
provided. As mentioned, instructions for copying your CP/M system onto an
8-inch disc appear in Introduction to the HP 8299¢A CP/M System. The
8-inch disc will contain all the information residing on the 5-1/4-inch
disc, but at different locations. A detailed sector map for the 8-inch
disc is provided in appendix A.

1.4 Bootstrap Loading

Because the memory available to CP/M and its programs is cleared each time
your system is turned off, the operating system must be brought into memory
each time you turn on your computer. The CP/M operating system resides
permanently on your system disc. Bringing the system from disc into the
CP/M module RAM is known as "bootstrap loading” or a "cold start" and is
implemented as follows:

a. Turn on your disc drive and insert the disc mar ked
Hewlett-Packard CP/M System into the drive with the lowest HP-IB
device address. This drive is identified as drive "A" by CP/M.

b. With the CP/M module installed in one of the four rear ports,
turn on your computer. Allow approximately 20 seconds for
warm-up and self-test.

c. The "A" disc access 1light should come on, indicating disc
activity. After a short period of time, your computer should
print a few lines of start-up information, the CP/M prompt "A>"
will appear, and CP/M is ready to go. If the CP/M prompt does
not appear, refer to Introduction to the HP 829@9¢A CP/M System
for instructions about maintenance and service.

Section 1l: General Information

CP/M remains in memory, ready to work, until you turn off or reset your
computer.

Other start-up procedures such as identifying the system printer and
specifying the alpha display pagesize are discussed in Introduction to the
HP 82900A CP/M System.

1.5 The CP/M Operating System

CP/M contains seven "built-in" commands, which are discussed briefly in
this section and in more detail in Introduction to the HP 829¢¢A CP/M
System. CP/M also enables you to 1load "transient" commands and user -
written programs into memory, access sequential and random access disc
files, and address various physical and logical devices. CP/M provides the
common structure, fundamental I/0 calls, and uniform memory organization.
User written programs can utilize all or part of these CP/M features
independently.

Keep in mind, as you continue through this manual, that many programming
applications can be implemented through a high-level language. Most of
these language subsystems provide a simplified access to the CP/M features,
so that a detailed knowledge of CP/M is not necessary to be productive with
your computer. However, if you elect to program in assembly language,
these CP/M features will become an integral part of your application.

1.6 CP/M Commands

Once you have the CP/M prompt, your computer is ready to accept a variety
of commands and program names as your needs dictate. Several of the
features of the operating system are implemented via the seven commands
internal to CP/M. These internal, "built-in" commands are quite distinct
from the extended set of "transient" commands which you will see later
in this section. CP/M commands are executed by pressing the [END LINE] key
after entering the command 1line, in much the same way as HP "native mode"
commands. For more detailed information about entering commands, refer to
Introduction to the HP 8299¢A CP/M System, and your computer's introductory
manual.

Built-In Commands

The built-in commands are described in Introduction to the HP 829@¢A CP/M
System as well as in most of the commercially available CP/M books. A
brief description of each command is provided for your benefit in table
1-1. The SAVE command, which is used to store user developed programs on
disc, is also discussed in section 7, with the assembly language utilities.

Section 1l: General Information

Table 1-1. CP/M Built-In Commands

+ + - -——t
| Command | Function |
+- e - +
| DIR List the directory of a specified I
| flexible disc. |
| I
| ERA Erase (delete) one or more file name |
| entries from a directory. |
| I
] REN Rename a specified file entry. |
I |
| SAVE Store an image of memory into a disc file. |
I |
| TYPE Type (list) a specified file to I
| the CP/M console. |
I |
] USER Log into a particular user area |
| of a disc. |
I |
| X: Changes the current logged disc to |
[disc x. |
+ - ——————— et

Transient Commands

As mentioned above, CP/M also provides several additional commands that are
disc resident. These are called "“transient" commands or "utilities"
because they are called into memory only when requested by the user.
Built-in commands always reside in memory, and utilize memory space whether
active or not. CP/M transient commands are equivalent to utility programs
on other computer systems. CP/M makes no distinction between standard CP/M
transient commands and assembly language or compiled programs written by
the user. Keep in mind that user written programs or transient commands
may reside on a different disc than the CP/M system. CP/M 1looks for the
requested transient command file only on the currently logged disc drive,
unless a drive identifier is included with the command.

The standard CP/M transient commands provided with your system are listed
in table 1-2. All of these are 1located on the CP/M System disc. As
indicated, some of the commands are described in Introduction to the
HP 82900A CP/M System, while others are discussed in this manual.

Generally, transients related to program development are documented in
sections 6 and 7 of this manual. Four of the transients that have general
uses as well as specific programming applications, are documented later in
this section. Some of the general purpose transient commands for copying
files and discs, and operating peripherals, are discussed in Introduction
to the HP 82900A CP/M System. Generally, the material in the HP 82900A
CP/M System Reference Manual is more in-depth and oriented towards the
system programmer. Consider this as supplementary to the material included
in the Introduction to the HP 829P@A CP/M System.

Section 1: General Information

Table 1-2. CP/M Transient Commands

—_—t
Description |

Name

+—+

[—— J— — ————— et e o i e o
ASM The CpP/M 808@ Assembler Program for]
writing assembly language routines.

Refer to section 7.

DDT Dynamic Debugging Tool, an aid in
verifying assembly language program
execution. Refer to section 7.

DUMP Produce a hex listing of a file.
Refer to section 7.

ED The CP/M character oriented text
editor program. Refer to section 6.

FORMAT Performs a complete surface test and
initializes disc media. Refer to
Introduction to the HP 8299¢A CP/M System.

LOAD The CP/M loader. This makes ASM
output files executable. Refer to
section 7.

I
I
I
I
I
I
I
I
|
I
I
I
|
I
I
I
I
I
|
I
I
PIP The Peripheral Interchange Program |
which permits file and device |
transfers. Documented in this section |

and in Introduction to the HP 829¢6A CP/M |
System. |

|

I

I

I

I

I

I

l

I

I

|

I

I

I

|

I

I

STAT CP/M device status program. Refer to
Introduction to the HP 829¢@A CP/M System
for operator information, or read in this
section about device assignments.

SUBMIT This CP/M transient permits batch
job execution with no user
interaction. Documented in this
section.

XSUB This program extends the
capabilities of SUBMIT to allow
"interactive" input. Documented in
this section.

1-6

Section 1l: General Information

1.7 Reference Manual Organization

The remainder of this section is devoted to the four general purpose
transient commands PIP, STAT, SUBMIT, and XSUB. Both the PIP and STAT
commands are useful in determining device and general file management. The
SUBMIT and XSUB commands allow limited "batch" processing for unattended
CP/M operation. Sections 2 and 3 discuss the more technical aspects of
CP/M, including the internal system structure and disc file organization.
Sections 4, 5, and 7 discuss CP/M transients and internal features related
to assembly language programming. Section 6 discusses the text editor
utility (ED) provided with CP/M. The ED command is useful for preparing
assembly language source files, as well as other types of files. In
addition, the appendices provide a summary of some technical information
related to CP/M and your computer.

1.8 Entering CP/M Commands

CP/M commands are indicated in uppercase letters and enclosed in brackets
throughout the manual. CP/M does not distinguish between lower and
uppercase letters, treating everything as uppercase. For clarity and
continuity in describing the CP/M commands, all commands appear in
uppercase.

Usually, command descriptions are followed by one or more examples, which
indicate how the command is entered, and the resulting action. The CP/M
prompt (for example "A>", if logged onto drive A) and other prompts invoked
by the specific command are included in the examples.

Your computer's keys are also indicated in uppercase letters throughout the
manual. For the sake of brevity, the [CTRL] key is indicated by an up
arrow (°) when a keyboard operation requires that you press ([CTRL] and
another key simultaneously. For example, “P indicates the [CTRL] key and
the [P] key are pressed simultaneously. Recall that commands are entered
by pressing the [END LINE] key after the command is typed; this action does
not appear in the examples.

CP/M comes equipped with some command line editing features which aid the
user in entering CP/M commands. These features, and other control
character functions are discussed in Introduction to the HP 8294@A
CP/M System. Familiarize yourself with these features before attempting to
enter commands.

To abort a CP/M command at any time, type in “C. This operation, referred

to as a "warm start," reloads the system from drive A and returns to the
drive which was current before the "C.

1-7

Section 1: General Information

1.9 The PIP Command

PIP, The Peripheral Interchange Program, is a general-purpose file transfer
program. As documented in Introduction to the HP 829¢¢gA CP/M System, PIP
allows you to move files between disc devices and several "logical devices"
as defined through IOBYTE device mapping (IOBYTE is discussed in section
2). The general format of the PIP command input is:

destination = sourcel [options], source2 [options],...

Valid source parameters include any existing disc file reference, with an
optional drive identifier, or any "wild card" specifier, and logical and
physical input device names. Destination devices include wvalid file
references, or default names and types based on the corresponding source
file specified, and logical and physical output device names.

The PIP option parameter is used to specify any special operations to be
performed during the PIP transfer. These PIP options can be left out of
the command 1line if none are desired. First we'll discuss how the PIP
command is entered, then, the use of device names, and finally the PIP
option parameters.

There are two methods of entering the PIP command. Both methods use the
above command input format. The first method is more convenient for
entering a series of PIP commands; the second is better suited for a single
PIP command.

1. PIP can be entered without destination and source inputs, by
typing in PIP after the CP/M prompt, and pressing the [END LINE]
key. PIP is loaded, and the system responds with an asterisk
prompt.

A>PIP
*

The PIP command input is typed in after the asterisk; pressing
END LINE starts execution of the command. When the specified
PIP operation is complete, the system responds with another
asterisk prompt. Multiple PIP commands can be entered and
executed in this fashion. When all the desired PIP commands
have been executed, return control to the system by typing a
“C or an [END LINE], following the asterisk.

Section 1: General Information

N Examples:

Command Action
ADPIP Loads the PIP command.
*A:FILE3=B:FILEl.TXT, Copies B:FILEl.TXT followed by
C:FILE2.TXT[E] C:FILE2.TXT to A:FILE3,TXT.

The E option is employed during
the copying of C:FILE2,TXT.

B:FILE,.=B:0OLD.* Copies all files named OLD of
any extension to FILE with the
same extension.

2. The PIP source and destination inputs can also be entered
directly in the PIP command. The single PIP command is
executed, and control is returned to the system.

Example:
Command Action
A>PIP C:=A:* * Copies all files from disc A to

disc C except files designated
as "System Files" (refer to STAT
command) .

Logical and physical device names may also be specified as source and

destination parameters. When used in this way, the device name is followed
by a colon, and entered in the command input.

Examples:

Command Action

A>PIP CON:=A:GJOB.TXT Copies A:GJOB.TXT to the CON:
output device.

A>PIP Loads the PIP command.

*FILE.TXT=CON: Copies the CON: input to the file
FILE.TXT.

A list of source and destination device names are given in table 1-3.
Since there is only one input device (the console) and 2 output devices

I~ (the CRT and the system printer), some device names are redundant. The
default power-on physical device maps are indicated.

1-9

Section 1l: General Information

Note: When using CON: as
"Z is typed, when

destination until a

PIP or the operating

entered.

system, depending on the way the

Table 1-3.

PIP Device Names

an input device in PIP, all input will go to the
control will be returned to either
PIP command was

I
Logical Device Name |
I

CON:

RDR:
(CP/M Reader)

CON:

PUN:
(CP/M Punch)

LST:
(CP/M List)

o ————— e —————— - ¢

Source Devices

.
}

(Computer Console)

Destination Devices

(Computer Console)

Possible Physical Result
Device Maps]
————— - _-___+_ ——— ————————— s . i e i s
TTY:
CRT: (default)
BAT: All physical
Ucl: input devices

use keyboard
TTY: (default) input.
PTR:
UR1:
UR2:
TTY: Output data is lost.
CRT: (default) Output to CRT.
BAT: Output to printer.
UC1: Output data is lost.
TTY: (default) Output data is lost.
PTP: Output data is lost.
UP1: Output data is lost.
UP2: Output data is lost.
TTY: Output data is lost.
CRT: Output to CRT.
LPT: (default) Output to printer.
UL1: Output data is lost.

1-19

/\

Section 1l: General Information

Special Devices

There are also three special PIP device names which implement specific
functions during file transfers. These are provided as standard features
of -the CP/M system.

The special source device names are:

NUL: sends a sequence of 40 "null" characters (ASCII @@H) to the
specified destination. This is normally used with punch output
devices; it has little use in the HP 829¢¢A CP/M System since punch
devices are not supported.

EOF: sends an "end-of-file" character (Control-Z or ASCII 1AH) to the
specified destination. Since this operation is automatic on your
computer, this source device has little use.

There is only one special destination device name.

PRN: is a special case of the LST: device which automatically expands
ASCII "TAB" characters to eight columns, prints leading line numbers,
and paginates the text every 60 lines. This is functionally equivalent
to specifying the option [T8NP6#].

PIP Options
Often during transfers between devices, and during special file transfers,
you will want to provide PIP with additional instructions concerning the

transfer. This can be done by specifying one or more PIP command options.
Table 1-4 contains a summary of these options.

1-11

Section 1l: General Information

Table 1-4. PIP Options

+ + +
| | |
! Option | Function |
! ! _ !
1 ' |
| B "Block Mode" Transfer |
{ D Delete Character Positions ;
: E Echo File Transfer to Console :
: F Strip "Form Feed" Characters :
: G Access Files in Other User Group {
: H Verify Hex File Format ,
: I Ignore Null Hex Records :
: L Convert to Lowercase :
: N Add Line Numbers :
: 0 Object Code (non-ASCII) Files :
{ P Printer Pagination :
: Q Quit Copy :
: R Read System Files :
: S Start Copy :
: T Set Tab Width :
: U Convert to Uppercase :
: \ Verify Copy :
: W Write to Read/Only File :
i Z Zero Parity Bit i

+ —_—

1-12

Section 1: General Information

Block Mode

Designates block mode transfer of data. Data is sent in blocks; the
end of each block is designated by the °S character (ASCII 53H). It
is normally used with paper tape input; since your only system input
is CON:, this option is of little use.

Delete Character Positions

This option takes the form "Dn", where n is a numeric value. PIP
will automatically truncate any characters beyond column "n" on each
line of source text. That is, after each carriage return character,
PIP will transfer only n characters until the next carriage return is
received.

This is primarily used to narrow down wide-lined files for listing on
narrow printer devices.

Echo File Transfer to Console

This causes each line of text transferred to be "echoed” to the
console. This permits you to view a file or device transfer at the
console as it occurs.

Strip "Form Feed" Characters

This option causes PIP to remove any ASCII "form feed" characters as
data is transferred from the source to the destination.

By using this option, a printer file can be prepared for nonprinter
use.

Access Other User Group

This option, when followed by a numeric value between @ and 15
decimal, will access the specified source file in the user number
specified. This is how files can be transferred from one user number
to another.

Note: Copying files to a different user area (if it is necessary to
have a copy of PIP in the destination user area) can be accomplished
using the following commands:

USER ¢ {Select user 0)

DDT PIP.COM (Load PIP.COM into memory and note
size s.)

GO (Warm boot and return to CCP)

USER n (Log in desired user area)

SAVE s PIP.COM (Save copy of PIP.COM in new user area.)

1-13

Section 1l: General Information

1-14

Verify Hex File Format

This option is used to verify that the source file is in proper Intel
Hex format. This is intended for use with paper tape readers where
no other error checking is available.

Ignore Null Hex Records

This option is also used during ".HEX" file transfers. It causes any
null records, those which begin with ":00", to be ignored during a
data transfer.

Convert to Lowercase

This option causes PIP to translate each source character to its
respective lowercase equivalent. No uppercase characters will be in
the destination file.

Add Line Numbers

This option is used to automatically append 1line numbes to the
beginning of each 1line of text in the destination file. There are
actually two forms of this option. "N" generates line number padded
with leading blanks, separated from the text by a colon. When "N2"
is specified, the line number is printed with leading zeros, and a
space separates the line number from the text.

Object Code (non-ASCII) Files

This option is wused when transferring non-ASCII files between
devices. Since PIP expects a Control-Z to mark the end-of-file, some
mechanism must be provided when a non-ASCII file may have an embedded
Control-Z (lAH) as wvalid data. When this option is specified, PIP
will continue to process data until a true end-of-file is
encountered.

Printer Pagination

This option, when followed by a numeric value "n", specifies the
number of printed 1lines per page. This can be used while routing
files to a device, or for direct formatting of a disc file. When the
PIP destination is a disc file, an ASCII form feed character is
inserted after "n" lines. If "n" is not specified or equals 1, 60
lines are printed on each page.

Section 1: General Information

Three blank lines are assumed at both the top and bottom of the page,
so the proper value for n can be calculated for a given page size as
follows:

Page size in North America is usually 11 inches, or 66 lines. Since
PIP assumes 6 lines per inch, and allows three lines at the top and
at the bottom of each page, a total of 6@ lines are actually printed
on each page. The proper value of "n" is therefore 6@. However,
many other countries use a standard page size of 7@ lines. 1In order
to specify this page size, with three blank lines at the top and the
bottom, specify an "n" of 64.

Quit Copy

This option allows you to specify a character string which will
terminate the PIP transfer. The format is:

[Qstring”Z]

The "Z here represents the Control-Z character. The first occurence
of the character "string" will cause PIP to stop the copy. If it is
not found, PIP will print the message "QUIT NOT FOUND".

Note that with this option, the actual "string" is copied before the
transfer ends.

Read System Files

Files can be defined as "System Files" by setting the high-order bit
of the second byte of the file type in the disc directory. This is
normally done with the STAT command.

This flag makes a file "invisible" to the CCP (the Console Command
Processor or CCP 1is discussed in section 2) and protects it from a
PIP instructed transfer. However, by specifying the "R" option, PIP
will read and transfer a file regardless of its "System File" status.

Start Copy
This option is similar to the Q option discussed earlier, except that
S permits you to specify the string that will start the copy. The
format is:

[Sstring~Z]

The characters starting with "string" are transferred to the
destination file.

1-15

Section l: General Information

T: Set Tab Width

This option, followed by a numeric value "n", specifies the number of
spaces to which ®ach "tab" character ("I or ASCII @9H) is to be
expanded. This is wuseful in printer 1listings and in creating
formatted text files.

U: Convert to Uppercase

This option is similar to the "L" option, except that all lowercase
characters from the source will be translated to uppercase. No
lowercase letters will exist in the destination file.

V: Verify Copy

This option, valid only on disc file transfegs, causes PIP to copy
the file as it normally would. After each block of data is written
to the destination file, it is read again and compared byte-by-byte
to verify that no errors occurred during writing.

W: Write to Read-Only File

The first byte of the file extension can be set (via the high-order
bit) as a read-only file. This is normally done using STAT as
described 1later.

In copying to an existing file reference, PIP will normally delete
the file and create a new copy. If that file 1is flagged as
read-only, PIP will ask for a verification to overwrite that file.

Z: Zero Parity Bit

This option is used to "force" the high-order, or parity bit on each
byte of data, to zero.

Examples

The PIP options are entered after the source device, and enclosed with
brackets. ©Spaces between multiple PIP options are ignored. Rather than
continue talking about the various options, here are some examples which
illustrate how the options are specified as well as how several of them
might be used.

1-16

Section 1l: General Information

Table 1-5. Example PIP File Transfers

PIP Command Input Action

+—+

A:=B:* *[D40@]

Copy all files from disc
B to A deleting all
characters after column 40.

LST:=PRINT.TXT[SFIRST"Z] Copy PRINT.TXT to LST:
starting with "FIRST".

to XYZ.BCD on disc B,

in lowercase, echo all
lines to console, and add
line numbers.

A:=B:EXP.DAT[V] Copy file B:EXP.DAT to
disc A and verify.
Control-Z signals EOF.

f—————— ¢

I
+
I
I
!
|
I
=
B:XYZ .BCD=E:BCD.TXT[LEN] Copy BCD.TXT on disc E |
I
I
|
!
I
I
I
I
|
i

s —— b - ——

1.10 The STAT Command

The STAT program is a useful transient which provides statistics on CP/M
disc files and logical and physical devices. STAT 1is also used to
implement logical and physical device mapping. First we will discuss how
STAT is used with disc files, and then how it is used with devices.

File Status
In using STAT to set file status, the general form is:
STAT file reference S$attribute
Valid file references include any existing disc file references, with
optional drive identifier or "wild card" specifiers. The ASCII "$"

character separates the file from the attribute parameter. The valid
attribute parameters are listed in table 1-6.

1-17

Section 1l: General Information

Table 1-6. Valid STAT File Attributes

+ S - - -+
] Attribute | Meaning]
T —— t——— - - +
I I
| R/0O Sets the specified file(s) |
| to "read-only" status. |
| I
| R/W Set the specified file(s) to |
] "read/write" status. |
| |
[SYS Set the specified file(s) to |
| "system" status. Refer to |
| text for details. |
| |
| DIR Resets the $SYS flag. |
+ —_—— _— —+

The $R/0 attribute sets the specified file(s) to "read-only." This option
actually changes the directory entry for the file(s). The high-order bit
on the first byte of the file type is set to signify the file is read-only
(refer to section 2).

The $R/0 option, since it is recorded in the file directory, is maintained
through both warm (°C) and cold starts.

The SR/W attribute provides a mechanism to reset the directory bit which
marks a file as read-only. This is the only way to reset the effect of the
SR/0 parameter.

When the $SYS attribute is specified, the high-order bit of the second byte
of the file type is set. This byte specifies whether a file should appear
in the DIR command report. If $SYS is specified for a file, it will not
appear when a directory command is entered via the CCP.

The $DIR parameter is used to reset the effect of the $SYS parameter. This
is the default state for files.

Device Status

STAT can also be used to report on logical and physical device status. The
general form used to produce these reports is:

STAT device parameter

The various options are 1illustrated in table 1-7. These options are
explained in the text which follows.

1-18

Section 1l: General Information

Table 1-7. STAT Device Status Parameters

— —t - _— —_— —_—

Parameter Meaning

4
+
———————i —_—— —————— e e e}

DEV: Reports which physical devices
are assigned to CP/M logical
devices and summary of available
STAT commands.

VAL: Show which physical devices
may be assigned to logical
devices.

USR: Produce a brief report showing
which user numbers are active.

DSK: Report on disc characteristics.

)
Qo
«Q
]

phy: Assigns the CP/M physical device
"phy:" to the logical device "log:".

x: = R/0O Assigns a temporary read-only
status to drive x.

By specifying DEV:, STAT reports the current logical to physical device

assignments.

Example

A>STAT DEV:

CON:
RDR:
PUN:
LST:

is CRT:
is TTY:
is TTY:
is LPT:

1-19

Section 1: General Information

The VAL: parameter illustrates the default STAT input line form, as well as
indicating which physical device names are valid for the four CP/M logical
devices CON:, RDR:, PUN:, and LST:. It also includes a brief report on the
format of each other command discussed here.

Example
A>STAT VAL:

Temp R/0 Disk: d:=R/0

Set Indicator: d:filename.typ $R/0 $R/W $SYS S$DIR
Disk Status DSK: d:DSK:

User Status : USR:

Iobyte Assign:

o« e

CON: = TTY: CRT: BAT: UCl:
RDR: = TTY: PTR: URl: UR2:
PUN: = TTY: PTP: UPl: UP2:
LST: = TTY: CRT: LPT: UL1l:

Recall that all physical input devices use the keyboard for input, and that
output data is lost for some of the unsupported output devices. Refer to
table 1-3 PIP Device Names.

The USR: parameter produces a brief report which tells you which is the
currently logged user number. It also reports on all user numbers which
have active files on the selected disc.

Example
A>STAT USR:

Active User : @
Active Files: ¢

By selecting the DSK: parameter, the user can receive a complete report on
disc statistics. If the drive identifier 1is included before "DSK:" (for
example STAT A:DSK:), statistics for the specified drive are reported.
When the drive identifier is omitted, all accessible drives are reported.
The statistics include: the drive name, the drive capacity in both records
and bytes, the maximum allowable number of directory entries, and physical
drive characteristics such as records per extent and sectors per track.

1-2¢

M

/\

Section 1: General Information

Example
A>STAT B:DSK

B: Drive Characteristics
1952: 128 Byte Record Capacity
244: Kilobyte Drive Capacity
128: 32 Byte Directory Entries
128: Checked Directory Entries
128: Records/ Extent
8: Records/ Block
32: Sectors/ Track

3: Reserved Tracks

STAT permits the user to select a physical to logical device mapping by
using the form "log: = phy:", where each field is a valid logical or
physical device name. The valid logical to physical device maps are shown
vhen the VAL: option 1is used. Valid LST: devices are summarized in table
1-8 below.

Table 1-8. Physical List Device Names

e

] phy: | Actual Printer Device |
+ ———————— - ———————— —+
| TTY: None. Output data is lost. |
| I
| CRT: CRT. !
| I
| LPT: System printer. I
I I
| UL1: None. Output data is lost. |
+ —————————— e _— ————————i
Example
A>STAT LST:=CRT: Sets list device as the CRT.

Finally, STAT allows you to specify read-only status for a disc drive. The
R/O status remains in effect until a warm start (°C) or cold start
(power-on} .

Example

A>STAT B: = R/0 The B drive is specified
"read-only" until the next
warm or cold start.

Note: Any time you change discs for a previously accessed drive, the disc
becomes read-only until the next warm or cold start.

1-21

Section 1l: General Information

1.11 Batch Job Processing

Because CP/M 1is optimized for terminal use, most applications are
interactive 1in nature. For example, most accounting programs require
operator input, and each order is unique. However, there are some tasks
that are repetitive in nature, which run with 1little or no human
intervention, and are executed frequently. Posting of daily invoices is an
example of such a task.

Two facilities are available through CP/M which permit such "batch" jobs to
be performed. The SUBMIT program allows you to execute a sequence of
commands by storing them in a ".SUB" extension command file. The CP/M Text
Editor (ED) or another editor is used to create the SUBMIT file. The CCP
executes the SUBMIT commands as if they were typed into the keyboard, and
executed in sequence.

The XSUB command provides, as a subset of SUBMIT, the option of including
special instructions during a SUBMIT batch operation. XSUB allows the
system to make decisions regarding the batch operation, as if you were
present.

The remainder of this section will describe these two powerful utilities
and illustrate how each might be used.
The SUBMIT Command
As mentioned, SUBMIT "batches" command line input from a ".SUB" extension
file to the CCP. The SUBMIT command can also specify information to be
included in the batch operation through the optional SUBMIT parameters.
The general form of the SUBMIT command is:

SUBMIT file name parameter 1, parameter 2 ...
To use SUBMIT, an ASCII text file with the file extension ".SUB" must be
prepared. This file should contain all the CCP commands which make up the
"job" to be accomplished.
For example, suppose you want to copy all your backup files from disc A

to disc B and produce a listing of the new B disc file directory on the
system printer. The following sequence of commands performs the operation.

1-22

Section 1l: General Information

Table 1-9. Copy Files Commands

——————— + — _—— —
| Command | Action |
| PIP B:=A:*,BAK Copies all backup files from disc |
| A to disc B. I
I |
| STAT CON:=BAT: Assigns the system printer as the |
| physical output device for the |
| logical CON: device. (Refer to table |
| 1-3 for a summary of possible maps.) |
| |
| DIR B: Produces a directory listing for |
| disc B. |
I |
| STAT CON: = CRT: Assigns the CRT as the physical |
| output device. |
+ ———————— e e —_ ———— —+

For our example, assume that these four lines of text have been entered
into a file called "JOB1.SUB". This file could be created easily using the
text editor transient, ED. To execute these statements, enter the SUBMIT
command as follows.

A>SUBMIT JOB1

The SUBMIT command creates a temporary file named "$$$.SUB" which contains
the commands listed in "JOB1.SUB". The commands are then executed one by
one in the order they appear in the file. After execution, each line is
purged from the "$$$.SUB" file.

The SUBMIT program must be on the currently logged disc. The "JOB1l.SUB"
file can be located on another drive, if the drive identifier is included
with the file name. The temporary "$$$.SUB" file is created on the current
drive, where the SUBMIT program resides.

The job defined above, while useful, is not as practical as it could be.
For example, assume your source files are on disc C rather than the disc
A, and that you wish to copy backup files to disc D. The SUBMIT
command allows you this flexibility, by accepting input parameters with the
SUBMIT command line. When used in this way, the SUBMIT command takes the
following form:

SUBMIT filename a b ¢ ...

This format allows you to include incomplete CP/M command lines in your
".SUB" file; the parameters a b c ... sequentially "fill-in" the missing
information. The parameters may be file references, numbers, letters, or
any other information you might wish to include in your ".SUB" file.

1-23

Section 1l: General Information

To use this feature, the ".SUB" file uses numbers preceded by a "$" (ASCII
24H) to indicate the place where SUBMIT parameters are input. A "$1" in
the ".SUB" file command line is replaced by parameter "a" in the SUBMIT
command, a "$2" is replaced by parameter "b", and so on.

Using the ED transient (refer to section 6 for information about ED),
create the file "JOB2.SUB", containing the following three lines:

PIP $2:=$1:*,BAK
STAT CON:=BAT:
DIR $2:

STAT CON: = CRT:

The $2 and $1 will be replaced by the second and first parameters after the
".SUB" file name, respectively. To execute a copy from disc C to disc D,
enter:

A>SUBMIT JOB2 C D

SUBMIT creates a file called "$$$.SUB" on the currently logged disc which
contains the following commands:

PIP D:=C:*,BAK
STAT CON:=BAT:
DIR D:

If the current drive is A, the "$$$.SUB" file will automatically execute,
line by line. Each line is purged from the file after it is executed. 1In
the event that some error causes SUBMIT to end prematurely, or if the
currently logged drive is not A, the "$$$.SUB" file remains on the disc
(is not purged) and will execute when the next warm boot (“C) occurs after
this disc is placed in the A drive.

To halt a SUBMIT operation at any time, press [CONT], [BACK SPACE], or “C.
Pressing the key(s) once halts SUBMIT at the current "$$$.SUB" file line;
remaining lines are not purged, and will execute at the next warm boot. To
purge the remainder of the "$$$.SUB" file, and avoid this situation, press
the key(s) a second time.

Note: By using a SUBMIT command as the 1last line of the ".SUB" file, you
‘can chain together multiple SUBMIT operations. You cannot use SUBMIT in
the middle of the ".SUB" file to nest a SUBMIT operation within another
SUBMIT operation.

1-24

™

Section 1: General Information

The XSUB Command

When XSUB appears in the first line of a ".SUB" file, the scope of the
SUBMIT operation is expanded to include general input. Without the XSUB
command line, SUBMIT interprets each 1line of the ".SUB" file as a valid
CP/M command, or a disc~resident program. XSUB allows you to also include
any characters, names, or instructions in the ".SUB" that are consistent
with the current operation. The ".SUB" file is executed as if you were
present, inputting commands and instructions from the keyboard.

Unlike other transient commands that are typed in after the CP/M prompt,
XSUB appears only as the first line of a ".SUB" file. The XSUB command is
used only in conjunction with the SUBMIT command, and can appear only as
the first line in the ".SUB" file.

For example, assume that you wish to revise a series of source program
files, For each file you want to replace the first 1line with the text
"Revision: 2". A sample ".SUB" file is listed below which can be used to
edit the source file.

The file, JOB3.SUB, contains the following lines:

XSUB Loads XSUB.

ED $1.ASM Loads ED; file to edited is specified in SUBMIT.
#A Append all lines.

B Start of buffer.

K Kill first line.

I Revision: 2 Insert new line

~Z End of insert.

E Exit ED.

Note the "Z which terminates the insert. Using ED, you cannot store the
control character in a SUBMIT file; use the up arrow character, ASCII 5EH,
instead.

To use the above ".SUB" file to the revise the file called "MBK.ASM", enter
the following SUBMIT command.

SUBMIT JOB3 MBK

The entire sequence will be executed to completion. The SUBMIT command
could be repeated with different parameters, specifying a different source
program to be edited.

When the last 1line has been executed, control returns to the CCP as with

SUBMIT. However, XSUB remains in memory until it is specifically
over-written by a cold boot or a disc system reset function call.

1-25/1-26

Section
II

CP/M INTERNAL ORGANIZATION

2.1 Memory Organization

The CP/M Operating System resides in approximately 8K bytes of high memory.
This means that, for most user applications, up to 56K bytes of memory are
available. Note that many interpretive languages use part of this memory
as well, so memory available for your high-level source program may be
somewhat less. Refer to the reference manual of the language you wish to
use for more information.

2-1

Section 2: CP/M Internal Organization

Table 2-1. CP/M Memory Organization

Hexadecimal
Address
FFFFH <+ ——— \
I | \
| BIOS | \
| I \
EEGOH 4=————mmm e e —+ FDOS
| I /
| BDOS | /
| I /
EG9PH 4—- ~+ FBASE /
| [
| ccp |
| I
D8O@H +—- + CBASE
I I
I |
| |
| |
] TRANSIENT |
I PROGRAM I
] AREA |
| (TPA) |
I |
| |
| USER MEMORY |
| SPACE]
I I
I |
| |
| |
I I
0l100H + —+ TBASE
| |
| BASE PAGE]
| |
P000H + -=—==+ BOOT

There are actually four 1logical areas of memory in CP/M., Table 2-1
indicates how memory is allocated in a typical CP/M system application.
The names along the right are the symbolic references given to the
indicated addresses of memory. These will appear often through the
remainder of the manual. Let's take a closer look at each area of memory
and what task it performs.

2-2

Section 2: CP/M Internal Organization

2.2 FDOS

The highest area of memory is where the Fundamental Disc Operating System
resides. FDOS is actually the heart of CP/M: all features of the operating
system are implemented here. There are actually two areas which make up
FDOS: the Basic 1I/0 System (BIOS) and the Basig Disc Operating System
(BDOS) .

BIOS is that part of CP/M which is unique to each particular computer
system. It contains all the routines necessary to communicate with
physical I/0 devices such as the disc and the CRT.

BDOS is generally fixed on every CP/M computer system, regardless of the
manufacturer. BDOS implements all the system function calls that can be
used by CP/M and your programs to perform input and output. It is BDOS
that accesses routines in BIOS so your program can be written in a machine
independent manner.

BDOS performs all calls to BIOS. Your program can access BDOS, pass one or
more parameters, and request BDOS to perform I/0 using BIOS. BDOS keeps
track of where each routine in BIOS is located. Your program only needs to
call BDOS. Fortunately, BDOS is accessed in the same manner regardless of
machine manufacturer or CP/M revision. Your programs are, therefore,
machine and revision independent.

2.3 CCp

The Console Command Program is the user interface to CP/M. If FDOS is the
heart of CP/M, then CCP is its personality.

CCP is actually a program written to access the features and functions of
FDOS. It is the CCP that provides you with the seven CP/M built-in
commands. The CCP can access all the system function calls in FDOS (system
function calls are discussed in section 4). The CCP simply accepts input
and takes the appropriate action.

The CCP also loads transient programs into the Transient Program Area.
Once it has done so, a transient program may expand into the area occupied
by the CCP. Of course, the CCP must be reloaded into memory once the
transient has completed. This is done automatically during a "warm start"
(@ warm start is implemented by typing [CTRL] [C]).

Section 2: CP/M Internal Organization

2.4 TPA

The Transient Program Area is where the CP/M transient commands and user
programs are loaded for execution, and is analogous to user memory in other
computer systems. Note the distinction between transient commands, which
are executed in the TPA, and built-in commands, which reside in the CCP.

Like the CCP, programs in the TPA may access all the system function calls
in FDOS.

2.5 Base Page

Base page is the special name for the lowest page or 256 bytes of memory.
On your computer, the base page occupies memory from @@@8¢H through @@FFH.
Because the base page contains important information for CP/M (and for TPA
programs), all CP/M programs should start at address 010@8H. This preserves
the integrity of the base page, and allows re-entry to the CCP when a
transient program is completed.

Base page includes all memory locations from address 0@00H through @@FFH
inclusive, for a total of 10@H bytes. Table 2-1 indicates which locations
are reserved and which are used. The meaning of each section is given in
the text which follows.

The jump to "Warm Start" command at address @@00H contains a 3-byte Z80
"JMP" instruction to the "Warm Start" entry in the Jump Vector Table in
BDOS. The final result of this JMP is that BDOS performs a "reboot." For
more information, refer to the section on BIOS Entry Points in section 5.

IOBYTE is stored at address @@@3H and determines the physical devices CP/M
maps onto its logical devices. Refer to section 4 for more information on
IOBYTE.

DRIVE ID at address @0@¢04H contains a numeric value representing the drive
ID of the currently selected disc drive. Note that this information is
informational only: to change mass storage device ID, use system function
call 14 described in section 4.

Section 2: CP/M Internal Organization

Table 2-2. Base Page Organization

+— — ——————————t
] ADDRESS | DESCRIPTION |
+ e e e +
| O@000H - @OO2H Jump to Warm Start |
| @003H IOBYTE |
| ©@004H DRIVE ID |
| @005H - 9@97H Jump to BDOS |
| ©@008H - P@37H Restart Locations]
| @038H - 0@3AH Restart 7 |
| ©@93BH - @G@5BH Reserved Scratch Locations |
| ©@05CH - @@7FH Default FCB]
| 008¢F - @EPFFH Default DMA Buffer |
+ - — —_— ——

The main entry into BDOS is stored in the form of a 3-byte "JMP"
instruction stored at address @@9@5H. All entries to system function calls
are made by performing a CALL to @@@5H. This results in a jump to the
lowest address of FDOS, and subsequent execution of the system function.
Note that the address stored at 0@@6H and 9P@7H reflects the lowest address
used by FDOS, so maximum user memory can be computed using this value.

The locations from @@@8H through @@37H are used for restart interrupts
available to the 280 programmer. Interrupt location 6, or "Restart 6,"
addresses @030H through @037H should not be used since future versions of
CP/M may require these locations.

"Restart 7" is interrupt location 7, addresses 0@38H through @@3AH. This
restart is used by DDT and several other (unsupported) utilities in CP/M,
but is not used by CP/M.

The reserved locations from @@3BH through @@5BH are used by CP/M for
scratch areas and should not be used by your applications.

The default FCB is established by CCP at address @@5CH.

CCP also establishes a default disc I/O buffer, called the DMA buffer,
starting at address @080H through the end of base page. These 128 bytes
are where disc data is placed for I/0 operations.

2.6 How the CCP Punctions

As mentioned earlier, the CCP is the interface between the user and CP/M.
CCP determines which disc is the current mass storage device, and prompts
you with the disc letter identifier and a ">". It then accepts input from
the console. Let's see what happens when you type a command and press the
[END LINE] key.

Section 2: CP/M Internal Organization

First, the CCP allocates a section of base page to store the entire command
line you entered. It also allocates part of the base page as a file
control block (FCB) in case you need to access data files. Refer to
section 3 for more information about base page and FCBs. All characters
are shifted to upper case.

The CCP searches your input line for one of the built-in commands as the
first nonblank characters. If one of the commands listed in table 1-1 is
found, CCP executes that command. If no built-in command is found on the
line, CCP proceeds to the next step.

The CCP will now search for a disc identifier as the first field on the
line. If a disc identifier is found (for example, "B:"), subsequent checks
will be made on the specified disc. Otherwise, all checks will be
completed on the currently selected disc.

CCP now assumes the input 1line specifies the name of a file with
extension "COM" (refer to Transient Programs below). The specified (or
default) disc is searched and, if such a program is found, the program is
loaded. The CCP then performs a CALL to 010@H to begin execution.

If the CCP cannot recognize either a built-in command or a transient
program name on Yyour line, it will display the command it interpreted
followed by a question mark. You will then be prompted for input once
again.

2.7 Transient Programs

By now you might have guessed that any compiled or assembled program you
might write becomes a transient command to CP/M. Your program is named
with a file extension of "COM" by the LOAD program; the CCP recognizes it
as an image of memory containing executable code; and your program has
access to all the internal features of CP/M. _

Your program, which begins at @10@H, occupies the TPA from TBASE through
CBASE - 1. In fact, your program can expand beyond CBASE and overwrite the
CCP. Memory up to FBASE - 1 can be used by an application and still leave
FDOS intact. Once a program begins to overwrite FDOS, however, it can no
longer access system functions available through FDOS.

FDOS is sometimes known as BDOS because it represents the primary entry
into BDOS. Locations at and above FDOS should be considered sacred by your
application. If you destroy any part of FDOS, your program will not be
able to reboot CP/M, and the user will have to do so on his own.

2-6

Section
ITI

CP/M FILE SYSTEM ORGANIZATION

3.1 File References

Each CP/M disc file 1is identified and accessed by a file reference. A
fully qualified file reference 1is made up of three parts: a disc drive
identifier, a file name, and a file extension.,

The disc drive identifier is optional, and in fact will vary depending upon
which drive contains the disc on which the file resides. If no drive
identifier is included, CP/M assumes the 1identifier of the currently
selected mass storage device.

The drive identifier 1is a single alphabetic character followed by a colon
(:). The letter, which must be between "A" and "P" inclusive, corresponds
to the physical disc drive. Refer to the Introduction to the HP 82900A
CP/M System for information about how CP/M assigns the drive identifier.

The file name typically serves to describe the contents of a file. It is
required, and may contain from one to eight alphanumeric characters. The
only special characters which are not allowed in the file name are:

All other printing characters are permitted.

The file extension is an optional parameter which contains one to three
alphanumeric characters. The restrictions on file extension characters are
the same as for file names. Sometimes known as a file type, the file
extension is used to identify what kind of data is contained in the file.

File names and file extensions are generally assigned in an arbitrary
manner. However, several extensions have special meanings to CP/M and its
commands.

These are presented in table 3-1.

Section 3: CP/M File System Organization

Table 3-1. File Extensions

T ASM ASM Source Code PRN Printer Listing File [
: BAK Back-Up ED File TXT ASCII Data File I
: BAS BASIC Source File $$$ Temporary File :
: COM Transient Command :
! DAT ASCII Data File :
I HEX ASM Output File i

3.2 File Structure

Each file can be thought of as a sequence of up to 65535 records of 128
bytes each. By multiplying this out, you can see the maximum file size is
8 million bytes of data. However, there are some restrictions to this
maximum. For example, a file must reside completely on a single disc.

When you create a file, vyou need not specify its maximum size. This is
because CP/M reserves disc space incrementally, only as it is actually
needed. Of course, this allocation on demand can mean your file may be
located in many different areas of the disc.

Fortunately, CP/M manages this potential difficulty so that, £from a
programmatic point of view, every file can be treated as logically
contiguous. This 1is done by means of several pointers maintained by the
operating system.

3.3 File Access

Data files can be accessed in either random or sequential fashion. There
is no rigid distinction between the two, but keep in mind that random
access files must have a fixed logical record length. Sequential files
can, of course, have variable length logical records. On the other hand,
every record within a random access file can be accessed directly, without
any need to access previous records. Both random and sequential data is
transferred to and from the disc in 128-byte physical records.

CP/M will manage any possible segmentation of data files as mentioned
earlier.

3-2

Section 3: CP/M File System Organization

ASCII files are treated as a sequence of characters, where each logical
record is terminated by a carriage return line feed sequence (CR/LF). This
means that each 128-byte physical record from a disc can have one or more
logical records embedded.

For ASCII data, such as text files, the end-of-file (EOF) is marked by a
control-Z character or a true end-of-file from CP/M. The latter is the
case only when a text file actually ends on one of the 128-byte physical
record boundaries. Binary files end only on physical record boundaries.

3.4 File System Overview

The user area of a CP/M disc 1is organized into physical records of 128
bytes each. CP/M keeps track of which sections of the disc are actually in
use by program and data files. These sections, or groups, are allocated in
segments of 1K bytes on the 5-1/4-inch disc and 4K bytes on the 8-inch
disc. This represents the minimum file size on each respective disc.

When a file is created, an entry is made for that file in the disc
directory. When the first record is written to that file, CP/M allocates
one group of free space and enters that group number in the directory of
the file. Note that changes are posted to the disc only when the file is
subsequently closed or automatically whenever a group boundary is crossed.

As a file grows beyond one group, additional groups are added in segments
of 1K or 4K respectively. This continues to happen until a total of 16K
bytes are allocated. This represents 16 groups on the 5-1/4-inch disc, or
4 groups on the 8-inch disc. 1In either case, this cluster of 16K bytes is
known as an extent and represents 128 physical records of 128 bytes each.

On the 5-1/4-inch disc, each directory entry can allocate up to 16 groups,
so each directory entry represents an extent. Up to 32 directory entries
or extents can exist for any particular file, so the maximum file size is:

16K bytes 32 extents 512K bytes

————————— x ————— = ——— = ——— ———— ——— — —

extent file file

Of course, the maximum disc capacity is 256K bytes, so you would run out of
disc before you run out of extents. In this case, the maximum can only be
theoretical.

Section 3: CP/M File System Organization

On the 8-inch disc, each directory entry has room for 8 groups of 4K bytes:
this means that each directory entry can handle two extents for a total of
32K bytes. While the extent count cannot grow any 1larger than 31 here
also, extra system bytes allow up to 64 directory entries permitting a
maximum file size of:

32K bytes 64 entries 2048K bytes

entry file file

Again in this case, the theoretical limit is larger than the actual disc
capacity of 1.2M bytes.

You will see more about how these extents are managed by CP/M in the next
few sections. First, let's see how dynamic information on the file is
maintained by the operating system so your data is secure.

3.5 File Control Block

As with most other operating systems, CP/M requires the use of a File
Control Block or FCB for each file that is open. The FCB is used by CP/M
to keep track of the file name, the current extent, the current record
number, and all other dynamic information for that file.

Most system function calls after function number 15 require the address of
a FCB to be passed in the Z80 DE register pair. When a transient program
is loaded, a default FCB is reserved in base page at address @@5CH. Most
programs which require use of a file will use this default FCB because of
its convenience.

File I/0 requires a location to use as a holding area, or buffer. CP/M
establishes a default file buffer, 128 bytes in length, at address @@8¢H.
This buffer 1location may be changed using function number 26, "Set DMA
Address" but most programs are able to use the default, For more
information, refer to the discussion of function 26 in section 4.

Regardless of its location in memory, the format of an FCB is fixed. The
FCB for a sequential access file is always 33 bytes in length. Random
access files require an additional 3 bytes appended to the sequential FCB
for a total of 36 bytes. The format of such a FCB is illustrated in table
3-2, while discussion of the actual fields and their meanings follow the
table.

Now we will look at a more detailed explanation of the meaning of each of
the fields illustrated below. Note that bytes from 32 through 35 are not
part of the disc directory entry: they exist only while an extent is
actually in memory as a File Control Block.

Section 3: CP/M File System Organization

Table 3-2. File Control Block
| | I | |
| Dec | Hex | Name | Description |
I I I | |
| 7} o9 dr Drive Code/User Number]
| |
| 21 g1 fl File Name: 8 bytes in length]
| 082 g2 £2 [
] 23 g3 £3]
I g4 g4 fa |
| 95 #5 £5 I
| 76 g6 f6 |
I 87 g7 £7 |
| 98 g8 £8 I
J [
] 29 29 tl File Extension: 3 bytes in |
! 10 gA t2 length |
| 11 OB t3 I
I |
] 12 ac ex Extent Number |
| |
I 13 gD sl Reserved for system use |
| 14 gE s2 (2 bytes) |
| |
| 15 gF rc Extent Record Count |
I I
| 16 19 a0 Disc Group Allocation Blocks |
| 17 11 dl |
| 18 12 d2 |
| 19 13 d3 I
I 20 14 d4 |
| 21 15 ds |
| 22 16 deé I
| 23 17 a7 |
I 24 18 ds [
| 25 19 as |
| 26 1A dle I
| 27 1B dll |
I 28 1C dl2 |
| 29 1D 413 I
| 30 1E dl4 |
| 31 1F dls I
I !
| 32 20 cr Current Record In Extent |
| I
| 33 21 rd Record Number Low Byte I
| 34 22 rl Record Number Mid Byte |
| 35 23 r2 Record Number Overflow |

Section 3: CP/M File System Organization

The fields are described in the next several pages. Remember that the last
four bytes ("cr" through "r2") exist only in the memory copy of the FCB.

BYTE @ : dr

This byte, known as the drive code, specifies the disc drive that contains
the file. The possible values for "dr" are:

-=> File on default drive.
=> File on drive A.
-> File on drive B.

N

16 => File on drive P.

This field will not change the currently selected drive; it will simply
access the specified drive to access this file.

BYTES 1 -> 8 : £f1 -> f8

This sequence of eight bytes should contain the ASCII file name. Remember
that, at this system 1level, uppercase characters are not automatically
generated. If the file name is to be uppercase, the proper ASCII values
must be loaded.

BYTES 9 -> 11 : t1 -> t3

N
These three bytes contain the optional file extension. As with the name,
the actual ASCII values must be loaded as no automatic uppercasing takes
place. The high-order bit on the tl and t2 bytes, normally zero for ASCII
characters, is used to further classify this file. Specifically:
tl high bit set to 1 defines the
file as "read-only."
t2 high bit set defines the file as a "system
"file." This means the file will not appear
in a directory listing.
BYTE 12 : ex
This byte determines the current extent being accessed, and can take values
from @ through 31 decimal.
BYTES 13 -> 14 : sl - s2
Flags reserved for use by CP/M when the file is actually open.
BYTE 15 : rc
This field is the record count. The value reflects the actual number of
physical 128-byte records referenced by the current extent. The maximum
value of rc is 128 decimal or 80 hex. N

3-6

Section 3: CP/M File System Organization

BYTES 16 -> 31 : dl1 -> di6

This group of bytes is reserved for system usage. The values that are
stored here reflect the disc group address of allocated groups. As the
file grows, additional groups are added to the list. On the 5-1/4-inch
disc, this section is organized into 16 single-byte entries; on the 8-inch
disc, the section is eight entries of two bytes each.

The following four bytes are not part of the disc directory entry: they
appear only in the memory FCB.

BYTE 32 : cr (FCB Only)

This one-byte pointer contains the current record number for input or
output. This value reflects the physical record within the current extent,
and is between 1 and 128.

BYTES 32 -> 35 : r@ -> r2 (FCB Only)

These three bytes, reserved as part of the default FCB at @@5CH, are only
used during random access disc I/0. Bytes r@ and rl contain a 16-bit
integer value which is the record number of the desired physical record.
Byte r2 is an overflow byte. Byte r@ contains the low-order 8 bits, while
byte rl contains the high-order 8 bits or the actual record number.

You will note that, with a maximum of 32 extents and only 128 records in
each extent, it would be impossible to attain a file size larger than 512K
bytes. CP/M manages this apparent conflict automatically for you by using
some of the bits available in the various reserved bytes in the FCB. Those
bits are used to keep track of which extent within a particular directory
entry is being referenced by "rc," "cr," and "ex."

Each file being accessed through CP/M must have a corresponding FCB which
provides the file name and allocation information for all subsequent file
operations. When you first access a file, usually via an "open" or "make"
function call, it is your responsibility to fill the lower 16 bytes of the
FCB and the "cr" field with appropriate information. Normally, the first
12 bytes are set to ASCII character values for the disc, file name and file
extension, with the remainder of the fields set to zero.

3.6 Disc Directory

The directory of each disc device contains an FCB for every file residing
on the disc. Each directory entry has all the information found in the
first 32 bytes of the FCB described above. The only difference is the
first byte, "dr." It's clear that the drive code cannot be determined until
a disc is actually mounted, so "dr" has no meaning in the disc directory.
The byte is therefore available for other use: the User Number of the file
creator is stored in that byte.

3-7

Section 3: CP/M File System Organization

Before you can access a file, you must copy the FCB into memory. This is
done for you by an "open" function call. CP/M manages the memory copy of
the FCB while you have the file open, and updates the disc version of the
FCB only when you close the file. This implies two points: first, remember
to close your files so the disc FCB reflects the actual file structure; and
second, whenever the memory FCB is destroyed before the disc FCB can be
updated (for example, by a power failure), you should expect to recover
your file from a backup and start again.

3.7 Default FCBs and the CCP

As you know, a user may specify one or two file names in many of the CCP
commands as well as in many of the transient commands. The CCP sets up one
default FCB at address @@5CH and fills the first 12 bytes from the first
file name on the command line. This FCB may be used without any further
action by your program. If a second file name is specified, the CCP places
that information into the bytes designated as d@ through dl16 in the default
FCB. Before an application can use that information, these bytes must be
moved into another valid FCB area according to the guidelines given above
for FCB layout.

If no file names are specified on the command line, all fields from @@SDH
through 006DH contain blanks. In all cases, the CCP will translate all
characters to ASCII uppercase prior to loading any information into the
buffers.

As an added convenience, the default file buffer area at address @9080H
contains the tail end of the command line typed by the user. That is, all
characters following the command or transient program name are loaded into
the default buffer. The first byte, 08808H, contains the byte count of the
line. Starting at byte @@81H you will find the parameters typed after the
command .

3.8 FCB Example

As an example of the information presented above, let's take a look at the
contents of the default FCB and the DMA buffer after a CCP command line is
accepted.

In our example, we will use PIP to copy the file "OLD.TXT" from the
currently selected disc to a file called "NEW.TXT" on the disc in drive
B. The command line is:

A>PIP B:NEW.TXT=OLD.TXT

Section 3: CP/M File System Organization

After the [END LINE] key is pressed, CCP sets up a default FCB at @@5CH.
The first 32 bytes are illustrated in table 3-3. Note that the first 16
bytes of each FCB are included in the buffer as established by the CCP. 1In
this case, PIP must be responsible for moving the second 16 bytes, the FCB
area for "OLD," into a second FCB area so both files can be accessed.

The default DMA buffer at address 008fH will contain the "tail" of the
command line which invoked PIP. Table 3-4 illustrates how that buffer
would appear for the example above.

In this "tail" buffer, CP/M has not acted to uppercase any bytes.
However, the CCP did uppercase the file name characters when building the
FCB from this buffer.

Further, notice that any delimiter characters entered on the command line
are available in the tail buffer, but will be removed from the FCB.

In the example above, PIP will access the FCB at address @05CH to establish
the FCBs for each file. One FCB can remain at that address, while the
second must be established in the TPA. PIP can also access the command
line stored at address 0080H to determine whether any additional parameters
were entered.

Just as PIP has access to these facilities, so do any assembly language
programs you write.

Section 3: CP/M File System Organization

3-190

Table 3-3. Example FCB Set-Up: PIP N
[| | I |
| Hex | Byte | Chars | Description |
| | | | |
|] dr @2H Destination Drive Code |
I I
| g1 £l N Destination File Name: "NEW" |
| g2 £2 E |
| 93 £3 W I
| g4 f4 |
| a5 f5 |
| g6 f6 I
| a7 £7 |
| 28 f8 |
I I
| 39 tl T Destination File Extension |
| gA t2 X I
i 2B t3 T |
| |
| gcC ex 99H Destination Extent Number |
| |
| @D sl Q0oH Reserved for system use |
| PE s2 goH |

| | N
| gF rc @gH Destination Extent Rec Count |
| I
| 19 dr @0H Source Drive Code (default) |
| I
| 11 f1 0 Source File Name: "OLD" |
I 12 f2 L |
| 13 £3 D I
I 14 f4 |
I 15 £5 |
| 16 fé6 |
| 17 £7 |
| 18 f8 |
| I
| 19 tl T Source File Extension |
| 1A t2 X I
| 1B t3 T |
| |
| 1C ex 10H Source Extent Number |
| |
| 1D sl 10H Reserved for System Use |
| 1E s2 19H |
| |
] 1F rc 10H Source Extent Record Count]

N

Section 3: CP/M File System Organization

Table 3-4. Command Line Buffer Format

I
Addr | Cnts Comments
|

80H
81H
82H
83H
84H
85H

|
I
I
I
| Length of text
I

I

I

I

I

| 86H

|

I

|

I

I

I

I

I

|

I

I

I

I

Space after "pip"
Drive Code

N
=N
oo

Destination File Name

87H
88H
89H
8AH
8BH
8CH
8DH
8EH
8FH
99H
91H
92H
93H

Assignment Symbol
Source File Name

DLHO I tXte €05 0 O

N X e

gH Trailing spaces(s)

t———————— e —————— — —— ———

3-11/3-12

Section
v

SYSTEM FUNCTION CALLS

4.1 Introduction

You've seen the general structure of CP/M and what features are available.
At this point, we will take a detailed look at how you can utilize all the
features of CP/M on your computer under program control.

All of the features of the operating system are implemented by means of
system function calls. These are subroutines called with a specific set of
parameters corresponding to the data for the subprogram. Values are
returned to the calling program once the subroutine terminates. The 280
registers are used to pass data to, and receive data from, the system
function routines.

The facilities available for access by transient programs fall into three
general categories: simple device I/0, disc file I/0, and system control.
The standard CP/M system function calls are summarized in table 4-1.

The number 1listed in table 4-1 under the CALL columns 1is known as the
system function number. This number corresponds to the decimal value that
is loaded into the C register to select a particular call.

In addition to the standard system function calls, or SFCs, Hewlett-Packard

has added extended calls which are useful in adapting the unique features
of your computer to CP/M. These calls are discussed later in this section.

4-1

Section 4: System Function Calls

Table 4-1. System Function Call Summary

| I |
| CALL OPERATION | CALL OPERATION |
| | |
| 7] SYSTEM RESET |
| 1 CONSOLE INPUT 21 WRITE SEQUENTIAL |
| 2 CONSOLE OUTPUT 22 CREATE FILE |
| 3 READER INPUT 23 RENAME FILE |
[4 PUNCH OUTPUT 24 DISC LOGIN VECTOR |
I 5 LIST OUTPUT 25 CURRENT DISC ID |
| 6 DIRECT CONSOLE I/0 26 SET DMA ADDRESS |
| 7 GET IOBYTE 27 GET ADDK (ALLOC) |
| 8 SET IOBYTE 28 WRITE PROTECT |
I 9 PRINT STRING 29 GET R/0 VECTOR I
| 1§ READ CONSOLE BUFFER 3¢ FILE ATTRIBUTES |
| 11 CONSOLE STATUS 31 PARAMETER ADDRESS |
| 12 CP/M VERSION # 32 GET/SET USER NUM |
| 13 RESET DISC SYSTEM 33 READ RANDOM |
| 14 SELECT DISC 34 WRITE RANDOM |
| 15 OPEN FILE 35 COMPUTE FILE SIZE |
| 16 CLOSE FILE 36 SET RANDOM RECORD |
| 17 SEARCH FOR FIRST 37 RESET DRIVE |
I 18 SEARCH FOR NEXT 38 UNUSED I
| 19 DELETE FILE 39 UNUSED |
| 20 READ SEQUENTIAL 49 WRITE W/ ZERO FILL |

4.2 Accessing Function Calls

As mentioned above, access to all function calls is accomplished by passing
a function number, and possibly additional information, to BDOS. The entry
point for all CP/M system function calls is address @@@5H. In general, the
function number is passed in register C with the address of additional
information contained in registers D and E.

Single-byte values are returned in register A, with double byte values
returned in registers H and L. 1In all cases, register A will contain the
same value as register L, while register B will be the same as register H.

Here 1is a sample program that illustrates how function calls are
implemented. This short program reads one console character at a time,
echoing that character to the console. It continues to accept input until
an asterisk is encountered, whereupon it returns control to CCP.

4-2

Section 4: System Function Calls

Table 4-2. Sample System Function Call

=== +
| BDOS EQU P@o5H ;BDOS ENTRY ADDR @@05H |
[CHARIN EQU 1 sREAD CHAR FUNCTION |
| ORG 0100H ; TPA STARTS HERE |
| NEXTC MV1 C, CHARIN ;FUNCTION # INTO C REG |
| CALL BDOS ; CALL DOS FUNCTIONS |
| CPI Yh! ;IS CHAR A '*'? I
! JNZ NEXTC ;NO? GET ANOTHER CHAR |
| JMP 0000H ;YES? WARM-BOOT SYSTEM |
| END ; END ASSEMBLY |

Before CCP transfers control to a transient program, it builds an
eight-level stack with the CCP return address pushed on the top of the
stack. BDOS, during system function calls, creates its own stack, so
overflow problems do not usually occur. DO NOT ASSUME THAT THE CONTENTS OF
ANY REGISTER WILL REMAIN INTACT DURING ANY SYSTEM FUNCTION CALL!

Most programs terminate by performing a warm boot, which will reload the
CCP and reinitialize the CCP stack. This is done by executing either a
CALL or a JMP to 0@00PH. Because of this, stack management 1is not as
important in CP/M as it is in many other systems.

Now we will look at each of the standard CP/M function calls in detail.

The discussion of each SFC will begin on a new page, so that you can
quickly locate a particular function.

4-3

Section 4: System Function Calls

FUNCTION @: SYSTEM RESET

Entry Parameters:
Register C: @@H

The System Reset function is equivalent to a warm boot in that program
execution ends and the previously current disc is selected as the mass
storage device. The CCP is loaded, and begins execution.

This call is just one way to return control to CP/M.

EXAMPLE: System Reset

BDOS EQU PBO5H ;CP/M ENTRY POINT
MVI C,00H ;MOVE SFC g INTO C
CALL BDOS ;s PERFORM SYSTEM RESET

————t

———— 4

4-4

Section 4: System Function Calls

FUNCTION 1: CONSOLE INPUT

Entry Parameters:
Register C: @1H

Returned Value:
Register A: ASCII Character

The Console Input function reads the next console character into register
A. Both alphanumeric characters and non-displayable control characters are
echoed to the console. Special characters function as they normally would
when entered as input to the CCP. Specifically, CTRL-I is expanded to a
8-column tab, and CTRL-P and CTRL-S function as printer echo and scroll
controls respectively.

The FDOS does not return to the calling program until a character has been
typed. If a character is not ready, execution suspends until a character
becomes available. If you wish to avoid this wait state, it is suggested
that you use SFC 11, Console Status, to verify that a character is ready.
Then you can use this function to actually read the character.

ASCII data requires only seven bits, and this function returns only the
least significant seven bits. BDOS specifically clears the high-order bit.
Normally, this presents no problem whatsoever. However, custom
applications could use the special keys which produce full eight-bit codes.

Executing this function is the only way to clear the console status.

EXAMPLE: Console Input

| !
| BDOS EQU PPO5H ;MAIN CP/M ENTRY POINT |
I L d L] L] I
[MVI C,01H sMOVE SFC INTO C |
| CALL BDOS ; INPUT AND ECHO CHARACTER |
| o o ;s CHARACTER NOW IN A |
I I

4-5

Section 4: System Function Calls

FUNCTION 2: CONSOLE OUTPUT

Entry Parameters:
Register C: @2H
Register E: ASCII Character

This function call causes the ASCII character value stored in register E to
be output to the CP/M console device.

As with SFC 1, characters with special meanings in CP/M are functional.
For example, tab characters (CTRL-I) are expanded into eight spaces.
Start/stop scroll (CTRL-S/CTRL-Q) and printer echo (CTRL-P) retain their
usual meaning.

EXAMPLE: Output @ to display

+me +
I l
| BDOS EQU @@@5H ;MAIN CP/M ENTRY POINT |
l o o I
| MVI E, '@ iMOVE ASCII @ INTO E |
| MVI C, B2H ;MOVE SFC 2 INTO C |
| CALL BDOS ;OUTPUT CHARACTER |
| o o ;@ IS ON CONSOLE |
I I

4-6

Section 4: System Function Calls

FUNCTION 3: READER INPUT

Entry Parameters:
Register C: @3H

Returned Value:
Register A: ASCII Character

This call is similar to SFC 1, Console Input, except that the byte of data
is accepted from the currently defined CP/M reader device.

As with SFC 1, SFC 3 will not return to your program until a byte is
available, so your program may "hang" in execution.

The reader device is always mapped to the keyboard.

EXAMPLE: Reader Input

+ -+t
! I
| BDOS EQU @@95H ;MAIN CP/M ENTRY POINT |
I L] * L] I
| MVI C,03H sMOVE SFC 3 INTO C |
| CALL BDOS ;s READ CHARACTER |
| o o ;s CHARACTER NOW IN A |
I I
+ -+

4-7

Section 4: System Function Calls

FUNCTION 4: PUNCH OUTPUT
Entry Parameters:
Register C: @4H
Register E: ASCII Character
This call results in the ASCII character stored in register E being sent to
the CP/M Punch device for output.

Data sent to the PUNCH device is always lost because no reader devices are
supported.

EXAMPLE: Output @ to punch device

+ +
I |
| BDOS EQU @@@5H ;MAIN CP/M ENTRY POINT |
| « . e |
| MVI E,'@' ;MOVE ASCII @ INTO E |
| MVI C,04H ;:MOVE SFC 4 INTO C I
] CALL BDOS ;OUTPUT CHAR TO PUNCH |
| . . . ; CHARACTER AT PUNCH |
] - |

Section 4: System Function Calls

FUNCTION 5: LIST OUTPUT

Entry Parameters:
Register C: @5H
Register E: ASCII Character

This call causes the ASCII character stored in register E to be output to
the currently defined list device.

EXAMPLE: Output @ to IOBYTE defined list device

| [
| BDOS EQU g@05H ;MAIN CP/M ENTRY POINT |
I . [. I
| MVI E,'@' ;MOVE ASCII @ INTO E |
I MVI C,@5H ;:MOVE SFC 5 INTO C |
| CALL BDOS : PRINT CHARACTER TO LIST |
I .« o o ;CHARACTER IS PRINTED |
| |

4-9

Section 4: System Function Calls

FUNCTION 6: DIRECT CONSOLE I/O

Entry Parameters:
Register C: @6H
Register E: @FFH (input) or
char (output)

Returned Value:
Register A: char or status
(no value)

This function implements a feature which permits I/0 from and to the
console device without any special treatment of special CP/M characters.
That is, a tab character (CTRL-I) is accepted as a single byte, and is not
expanded to eight spaces. This is the case for start/stop scroll and
printer echo as well.

To output a character, load register E with the desired ASCII character.
On input, the character accepted is not automatically echoed to the console
as it is with SFC 1. Also, note that the console status (SFC 11) is not
reset until SFC 1 executes. If you use this function to accept input, use
this call for console status to assure consistent information.

To accept input, 1load register E with OFFH. If a character is available

for input, it is returned in register A. If no byte is ready, register A
contains @@H upon return.

EXAMPLE: Read and echo a character on the console

I |
| BDOS EQU 9005H ;MAIN CP/M ENTRY POINT |
I e o o I
| INPT MVI E,0FFH ;MOVE INPUT CODE INTO E |
| MVI C,06H ;MOVE SFC 6 INTO C |
| CALL BDOS ;CHECK CONSOLE FOR INPUT |
| CPI OOH ;IS CHARACTER READY? |
| JZ INPT ;NO - READ AGAIN |
I CHARACTER NOW IN A |
| MOV E,A sMOVE CHARACTER INTO E |
| MVI C,06H sMOVE SFC 6 INTO C |
| CALL BDOS ; ECHO CHARACTER AT CONSOLE |
I e o ; CONTINUE |
I l

4-10

Section 4: System Function Calls

FUNCTION 7: GET IOBYTE

Entry Parameters:
Register C: @7H

Returned Value:
Register A: 1IOBYTE Value

This function returns the current wvalue of IOBYTE, 1located at address
@00A3H.

IOBYTE is used to select the active list device on the HP-86/87.

EXAMPLE: Read current IOBYTE value

BDOS EQU PQ0@5H ;MAIN CP/M ENTRY POINT
MVI C,087H sMOVE SFC 7 INTO C
CALL BDOS ;READ IOBYTE
e o o ; IOBYTE NOW IN A

+————————t
+—-————+

4-11

Section 4: System Function Calls

FUNCTION 8: SET IOBYTE
Entry Parameters:
Register C: @8H
Register E: IOBYTE Value

This function is used to set the contents of IOBYTE to the value passed in
register E.

IOBYTE is used to select the active list device on the HP-86/87.

EXAMPLE: Load HP-IB printer code in IOBYTE

| |
| BDOS EQU @B95SH ;MAIN CP/M ENTRY POINT |
' e o o I
| MVI E,COH ;SELECT HP-IB IN IOBYTE |
| MVI C,08H ;MOVE SFC 8 INTO C |
| CALL BDOS sWRITE TO IOBYTE |
| e o ; IOBYTE NOW UPDATED |
| !

4-12

Section 4: System Function Calls

FUNCTION 9: PRINT STRING

Entry Parameters:
Register C: @9
Registers DE: String Address

This function is used to print the contents of memory to the CP/M console
device. It 1is a very useful function for simple output for prompts and
information.

The buffer to be printed can be of any length, limited only by the amount
of free memory. Regardless of the 1length, the printed string will
terminate when the first ASCII "$" is encountered.

To use this call, the DE register pair must contain the address of the
start of the buffer. Memory locations starting at that point are
considered to be ASCII characters, and all subsequent memory locations are
printed until a location with an ASCII "$" is encountered. The "$" is not
printed to the console.

To print an ASCII "$" character, some other output function call must be
used.

Data printed wusing this call is processed for special characters. Tabs,

start/stop scroll, and printer echo are all treated normally as with SFC 2
above.

EXAMPLE: Print 'HELLO THERE' to console

I I
| BDOS EQU @995H ;MAIN CP/M ENTRY POINT |
| MESG DB '"HELLO THERES' |
| o o ;NOTE MESG ENDS WITH $ |
| LXI D,MESG ;ADDR OF MESG INTO DE I
| MVI C,09H ;MOVE SFC 9 INTO C |
I CALL BDOS ; PRINT STRING 'MESG' I
| e o sMESSAGE NOW AT CONSOLE |
I I

4-13

Section 4: System Function Calls

FUNCTION 1g: READ CONSOLE BUFFER

Entry Parameters:
Register C: @AH
Registers DE: Buffer Address

Returned Value:
Console Characters in Buffer

This function accepts a 1line of input from the CP/M console device. This
data is not available to the calling program until the [END LINE] key is
pressed or until the input buffer overflows.

To access this function, an application must first set up a buffer space
into which to accept input. The DE register pair should contain the
address of the start of the buffer. The buffer itself should take the
form:

Imx[nclcllc2|c3|cd]|c5|c6|c? e« « « |len=1 |

DE: +0 +1 +2 +3 +4 +5 +6 +7 +8 o o . +n

In this case, "mx" is the maximum number of characters to accept and should
be set by your application. The "nc" parameter is returned by CP/M as the
actual number of ASCII characters accepted, and the characters are stored
from "cl" for "nc" characters.

This function does not return any data from CP/M until the [END LINE] key
is pressed (or more than "mx" characters are typed). For this reason, all
the line editing features of CP/M remain valid. These include:

DEL erases the last character from the buffer and echoes
the erased character to the console.

CTRL-C causes a warm boot when typed as the first
character on a line.

CTRL-E performs a physical end-of-line without
sending data to CP/M.

CTRL-H backspaces one character, erasing it from
both the screen and the input buffer.

CTRL-J performs a line feed, and is functionally
identical to [END LINE]. Data is returned to the calling
program.

CTRL-M performs a carriage return. Data is returned to
the calling program.

CTRL-R performs a CR/LF and re-types the current line. It is
used to re-display a clean line.

CTRL-U performs a CR/LF, erases all characters in the input
buffer, and returns to input mode.

CTRL-X performs multiple backspaces until all characters
on the current line are erased.

4-14

Section 4: System Function Calls

Note also

legible.
EXAMPLE: Accept console input buffer
+— - +
| |
| BDOS EQU A0A5H ;MAIN CP/M ENTRY POINT |
| BUF DS 82 :SAVE 82 BYTE BUFFER |
| MX EQU BUF+@ ;MX IS FIRST BYTE OF BUF |
| NC EQU BUF+1 ;NC IS NEXT BYTE OF BUF |
| INBUF EQU BUF+2 ;CONSOLE INPUT LINE |
I . . ; I
| MVI A,80 ;sMOVE 80 DECIMAL INTO A |
| STA MX :STORE A REGISTER IN MX]
| LXI D,BUF ;MOVE BUF ADDR INTO DE |
] MVI C,0AH ;MOVE SFC 10 INTO C |
] CALL BDOS ;ACCEPT CONSOLE INPUT i
I . . ;NC CONTAINS CHAR CNT |
| o o ; INBUF CONTAINS LINE |
| I

that those functions
position (e.g., CTRL-X) do so only to
ended. This convention makes operator data

that return the carriage to

the leftmost

the column position where the prompt
input and line correction more

4-15

Section 4: System Function Calls

FUNCTION 11: GET CONSOLE STATUS

Entry Parameters:
Register C: @BH

Returned Value:
Register A: Console Staus

This function is used to determine whether a valid character is ready for

input at the console device. This is useful in combination with SFC 1,
Console Input.

If a character is ready at the console, @1H is returned in register A. 1If
no character is present, @@H is returned.

This is the only call which will clear the status of the console. For an
alternate method of determining the console status, see SFC 6.

EXAMPLE: Read console status

Fo———— +
I I
| BDOS EQU 0905H ;MAIN CP/M ENTRY POINT |
I .« o o I
| STAT MVI C,9BH :MOVE SFC 11 INTO C |
| CALL BDOS ;:GET STATUS |
| CPI gFFH ;IS CHAR READY? I
| JZ READY ;YES - GOTO READY |
| NOCHAR JMP STAT ;NO - START OVER |
] .« o o : |
| |

4-16

Section 4: System Function Calls

FUNCTION 12: RETURN VERSION NUMBER

Entry Parameters:
Register C: @CH

Returned Value:
Registers HL: Version Number

This function is used to determine which revision of CP/M is currently in
memory. This permits an application that requires features of one revision
of CP/M to verify the actual revision level.

The revision number will be returned in the HL register pair. In all
cases, H will contain @@H. L will contain a hex value in the range of 20¢H
through 2FH. A 22H indicates revision 2.2.

Inclusion of this function is primarily for compatibility with other CP/M
systems since the HP extended functions include a series of calls that
verify not only revision number, but also verify that the CP/M is running
on an HP-86 or HP-87.

EXAMPLE: Determine whether CP/M is Rev 2.2 or later

l I
| BDOS EQU @P05H ;MAIN CP/M ENTRY POINT |
! ' I
| MVI C,0CH sMOVE SFC 12 INTO C |
| CALL BDOS ;s READ REVISION NUMBER I
| MoV A,L ;MOVE REV INTO A |
| CPI1 22H ;IS REV = 2,2 |
| JNZ REVOK ;YES - GOTO REVOK |
| REVERR . . . ;NO - ERROR |
! I

4-17

Section 4: System Function Calls

FUNCTION 13: RESET DISC SYSTEM
Entry Parameters:
Register C: @DH
This function performs a disc system reset. This means that the file
system is restored to a read/write state on all discs that are on-line.

Drive A is selected, and the default disc buffer is set to @@8gH.

Use of this function permits the application to programmatically request a
change of discs without any need to "reboot" to gain write access to the
new disc. Refer to SFC 28 and 29.

EXAMPLE: Make all discs read/write

+ +
I I
| BDOS EQU @@@5H ;MAIN CP/M ENTRY POINT |
I . . . I
| MVI C,@DH ;MOVE SFC 13 INTO C |
| CALL BDOS ;RESET DISC SYSTEM |
| - .. ; CONTINUE |
I I
I I

4-18

Section 4: System Function Calls

FUNCTION 14: SELECT DISC

Entry Parameters:
Register C: @EH
Register E: Selected Disc

This function permits the selection of any disc drive as the default disc.
This will set all subsequent disc operations that specify the default mass
storage device to this disc.

The E register should contain a value specifying which disc is to be
selected. A value of @@H indicates drive A; a value of @FH represents
drive P,

The drive specified will be placed "on-line." Specifically, this activates
the directory, which remains active until a re-boot or Reset Disc System
(SFC 13) call is done.

If a disc 1is changed while on-line, it 1is treated as a read-only disc by
CP/M to prevent possible data loss from using an incorrect disc. A Reset
Disc System call will reset the disc to read/write as mentioned in SFC 13.

If no disc is mounted in the selected drive, CP/M will print an error
message. A warm boot is the only recovery, and the program which has been
executing will need to be run again.

EXAMPLE: Select disc "C"

+— +
| |
| BDOS EQU @0@a5H sMAIN CP/M ENTRY POINT |
' L] L] * l
] MVI E,02H ;CODE FOR DRIVE C INTO E |
| MVI C,PEH sMOVE SFC 14 INTO C]
| CALL BDOS ; SELECT DISC C |
| [] * * I
I |

4-19

Section 4: System Function Calls

FUNCTION 15: OPEN FILE

Entry Parameters:
Register C: @FH
Registers DE: FCB Address

Returned Value:
Register A: Completion Code

This function 1is used to initially open a file for access by your
application. A successful open will store the correct extent information
from the disc directory into the FCB you have reserved for that file.

The address of the FCB should be passed in register pair DE. Your
application must set up the FCB as follows: byte @ is the disc, and may
contain a value in the range from 0 through 16. A value of ¢ means the
file is on the currently selected mass storage device; values from 1
through 16 indicate disc drives A through P, respectively.

The file name and file extension are loaded into byte positions 1 through
1l. Byte positions 12 through 35 should be @g@H.

You normally will search the directory for a specific file, and there will
be no question of the desired file name or extension. You may, however,
choose to include a "wild card" specifier in any of the positions. A wild
card character means that any character in that byte position will match.
This wild card can also apply to the "ex" field, although care must be
taken in doing this because you may not be at the start of file after a
successful open call.

This wild card feature is implemented by placing an ASCII "?" (@3FH) in the
desired byte position of the FCB. 1In this case, CP/M will return the FCB
with data from the first file to match the wild card specification.

Upon return, the A register contains a completion code. If the file was
not found, or could not be opened, a return of @FFH should be expected. If
the open was successful, a return value in the range of # through 3 will
occur. This number is used by the system to indicate which of the four
directory entries per disc record contains the proper FCB. In any case,
this value should not be necessary for your application.

4-20

/\

Section 4: System Function Calls

EXAMPLE: Open file "A:PAYROLLA,DAT"
+ +
I |
| BDOS EQU Jd3@5H ;MAIN CP/M ENTRY POINT |
| FCB DB @@, ' PAYROLLADAT',00,00,00,00 |
| DBLOCK DS 16 ;REMAINDER OF FCB - GROUP |
| CR DS 1l ;FCB CURRENT RECORD]
| REC DS 3 ;r@,rl, and r2 |
I . . |
| LXI D,FCB ;MOVE FCB ADDRESS INTO DE |
| MVI C,0FH ;sMOVE SFC 15 INTO C |
] CALL BDOS ;OPEN FILE |
| CPI @FFH ;s ERROR/NO FILE? |
i JZ ERR ;YES - GOTO ERR ROUTINE |
| OK o o s NO - PROCEED |
I |

4-21

Section 4: System Function Calls

FUNCTION 16: CLOSE FILE

Entry Parameters:
Register C: 10H
Registers DE: FCB Address

Returned Value:
Register A: Completion Code

This call is the inverse of SFC 15, Open File. When this call is executed,
the FCB pointed to by register pair DE is written to the disc, which
updates the current file information and insures that your data is properly
recorded.

The return value for a successful close is in the range of & through 3 for
the reasons described above under Open File. An unsuccessful close
operation due to a disc error or some other misfunction will return @FFH.

Technically, a file need not be explicitly closed if no data has been

written to that file. However, closing every active file prior to program
termination is good programming practice.

EXAMPLE: Close file "A:PAYROLLA.DAT"

I I
| BDOS EQU P@@5H ;MAIN CP/M ENTRY POINT |
| FCB DB @0, 'PAYROLLADAT' ,00,00,00,00 |
| DBLOCK DS 16 ;REMAINDER OF FCB - GROUP |
| CR DS 1 ;FCB CURRENT RECORD |
| REC DS 3 ;r@,rl, and r2 |
| .« o . ; I
] LXI D,FCB ; FCB ADDRESS IN DE]
| MVI C,10H ;sMOVE SFC 16 INTO C |
! CALL BDOS ;CLOSE FILE |
| CPI1 PFFH ;s ERROR/NO FILE? |
| JZ ERR ;YES - GOTO ERR ROUTINE |
| OK o o o ;NO - PROCEED |
I [

4-22

Section 4: System Function Calls

FUNCTION 17: SEARCH FOR FIRST

Entry Parameters:
Register C: 11H
Registers DE: FCB Address

Returned Value:
Register A: Completion Code

This function is used to return the actual directory entry in the DMA
(Direct Memory Access) buffer. This information, while not frequently
required by applications, can then be used to examine the actual directory
entry. The DIR command is an example of how this call might be used.

The DE register pair should be set up to contain the address of the FCB.
Follow the guidelines given in Open File, SFC 15, concerning wild cards and
other set-up questions.

If no entry is found in the directory, a value of @FFH is returned in
register A. If an entry is found, register A will be set to a value
between # and 3. As mentioned in Open File above, this value indicates
which 32-byte directory entry within the 128-byte physical record contains
the actual entry for this file.

The currently defined DMA buffer receives the entire disc directory record:
the 128 bytes includes four possible files. By multiplying register A by
32, you can calculate how many bytes into the DMA buffer you will find the
proper FCB entry.

In the case of this function, you can enter a question mark "wild card" in
the drive code filed, byte @#. This causes CP/M to search all disc drives
that are on-line until the first file meeting the FCB name requirements is
found.

EXAMPLE: Find first file matching "A:PAYROLL?.DAT"

| |
| BDOS EQU d005H sMAIN CP/M ENTRY POINT |
| FCB DB @9, 'PAYROLL?DAT' ,00,00,00,00 |
| DBLOCK DS 16 ;REMAINDER OF FCB - GROUP |
| CR DS 1 ;FCB CURRENT RECORD |
| REC DS 3 ;r@,rl, and r2 |
| .« . . ; I
| LXI D, FCB ; FCB ADDRESS INTO DE |
| MVI C,11H sMOVE SFC 17 INTO C |
| CALL BDOS ; SEARCH FOR FILE SPEC |
] CPI PgFFH ;ERROR/NO FILE? |
| JZ ERR ; YES - GOTO ERR |
| OK e o o ;NO - PROCEED |
I |

4-23

Section 4: System Function Calls

FUNCTION 18: SEARCH FOR NEXT

Entry Parameters:
Register C: 12H

Returned Value:
Register A: Completion Code

This function is used in conjuction with the previous Search for First
call, to continue scanning through the directory from the entry after that
found as the first qualified entry.

Like the first function call, this call returns @FFH when no additional
qualifying entries are found in the directory.

EXAMPLE: Find next occurrence of specified file name

| |
| BDOS EQU @B05H ;:MAIN CP/M ENTRY POINT |
| FCB DB @@, ' PAYROLL?DAT' ,00,00,020,00 |
| DBLOCK DS 16 ; REMAINDER OF FCB - GROUP |
| CR DS 1 ; FCB CURRENT RECORD |
| REC DS 3 ;r@,rl, and r2 |
| .« o . |
| LXI D,FCB ; FCB ADDRESS INTO DE |
| MVI C,12H ;MOVE SFC 18 INTO C |
| CALL BDOS ; SEARCH FOR FILE |
] CPI @FFH :ERROR/NO FILE? |
| Jz ERR :YES - GOTO ERR |
| OK .« o o ;NO - PROCEED |
| |

4-24

Section 4: System Function Calls

FUNCTION 19: DELETE FILE

Entry Parameters:
Register C: 13H
Registers DE: FCB Address

Returned Value:
Register A: Completion Code

This call is used to delete a file entry from the specified disc directory.
A question mark character (3FH) can be used in any position of the file
name or extension. This "wild card" allows vyou to delete all files that
meet the criteria specified. A "?" may not be specified in the drive code
field.

CP/M will automatically delete all extents for the specified file(s),
regardless of the value loaded into the "ex" field.

This function will return a value in the range of @ through 3 if the delete

completes normally. A value of OFFH is returned in case of an error (for
example, no such file exists).

EXAMPLE: Delete "B:PAYROLLA.DAT"

| |
| BDOS EQU Qd35H sMAIN CP/M ENTRY POINT |
| FCB DB @@, ' PAYROLL?DAT' , 00,00, 00,00 |
| DBLOCK DS 16 ;REMAINDER OF FCB - GROUP |
| CR DS 1 ; FCB CURRENT RECORD |
| REC DS 3 ;r@,rl, and r2 |
| .« . . I
| LXI D,FCB ;FCB ADDRESS INTO DE]
| MVI C,13H ;sMOVE SFC 19 INTO C |
| CALL BDOS ; DELETE FILE |
| CPI1 QFFH ;ERROR/NO FILE? |
| JZ ERR ;YES - GOTO ERR]
| OK e o @ ;NO - PROCEED |
I |

4-25

Section 4: System Function Calls

FUNCTION 2¢: READ SEQUENTIAL

Entry Parameters:
Register C: 14H
Registers DE: FCB Address

Returned Value:
Register A: Return Code

This function is used to input the next sequential record from a
previously-opened file. The 128-byte physical record is placed into the
currently selected DMA buffer, and a value of g¢H is returned in the A
register. If, for any reason, the read cannot be completed, a non-zero
value is returned in A. Such an error could signify an attempt to read
beyond the end of the file.

The record to be read will be the recerd number stored in the "cr" field of
the FCB. After that record is read, the value will be incremented in
anticipation of the subsequent read. If the data referenced by the new
value of "cr" is not contained in the current extent, CP/M will close the
current extent and locate and open the next sequential extent
automatically. This assures that the FCB will be valid on subsequent
operations.

While "cr" is normally calculated automatically, an application can alter

the contents of "cr" as necessary. CP/M will attempt to access whatever
record number is indicated by "cr."

EXAMPLE: Read next sequential record from file

+ - +
I I
| BDOS EQU P@@5H ;MAIN CP/M ENTRY POINT |
| FCB DB ¢9, 'PAYROLL?DAT' ,00,00,08,00 |
| DBLOCK DS 16 ;REMAINDER OF FCB - GROUP |
I CR DS 1 ;FCB CURRENT RECORD |
| REC DS 3 ;r@,rl, and r2 |
| I
| LXI D,FCB ; FCB ADDRESS INTO DE |
| MVI C,14H ;sMOVE SFC 20 INTO C |
| CALL BDOS ;READ RECORD 'cr'! |
| CPI PPH ; ERROR ON READ?]
| JNZ ERR ; YES - GOTO ERR |
| OK o o o ;NO - PROCEED |
I I

4-26

Section 4: System Function Calls

FUNCTION 21: WRITE SEQUENTIAL

Entry Parameters:
Register C: 15H
Registers DE: FCB Address

Returned Value:
Register A: Completion Code

This function will write the contents of the 128-byte DMA buffer to the
record pointed to by the "cr" field in the FCB. The contents of "cr" are
incremented automatically after the data is written.

If an error occurs on output, a non-zero value returns in register A. This
might happen if the disc is write-protected. A normal completion will
return an A register value of @@H.

As with the Read Sequential function, CP/M will automatically load the
proper extent if, after the current "write," the next extent is required.

EXAMPLE: Write next sequential record to file

4— +
| |
| BDOS EQU @095H ;MAIN CP/M ENTRY POINT |
| FCB DB @@, 'PAYROLL?DAT' ,00,00,00,00 |
| DBLOCK DS 16 ;REMAINDER OF FCB - GROUP |
| CR DS 1 ;FCB CURRENT RECORD i
| REC DS 3 ;r@,rl, and r2 |
[o o o |
| LXI D,FCB ;FCB ADDRESS INTO DE |
| MVI C,15H ;MOVE SFC 21 INTO C]
| CALL BDOS sWRITE RECORD ‘cr! |
| CPI 20H ;ERROR ON WRITE? |
| JNZ ERR ; YES - GOTO ERR |
| OK e o e ;NO - PROCEED |
| I

4-27

Section 4: System Function Calls

FUNCTION 22: CREATE FILE

Entry Parameters:
Register C: 16H
Registers DE: FCB Address

Returned Value:
Register A: Completion Code

This function is used to initially create a file on a specific disc drive.
After the call, the file is open, so no call is necessary to additionally
open the file.

The FCB must specify a file name which does not exist on the specified disc
unit. The "dr" drive code may be @@H, but this simply specifies the
current default drive. No question marks are allowed in the FCB, since
"wild card" characters do not make sense in a create environment.

The DE register pair should point to the FCB. If the file is successfully
created, the A register contains a value in the range of @ through 3. The
value indicates the offset of the FCB within the physical record containing
the directory entry for this file. A value of @FFH will be in register A
if the file could not be created for any reason.

It is the responsibility of the programmer to verify that no duplicate file
name exists on the specified disc. CP/M will create a duplicate directory
entry with the same name if requested, and this can make file integrity
uncertain.

One way of detecting duplicate file names 1is to attempt an "open" function

on the specified filename. If that call returns an error, then and only
then do you attempt to create the file.

4-28

a

Section 4: System Function Calls

EXAMPLE: Create "B:PAYROLLA,DAT"

+ +
| |
| BDOS EQU PQ35H sMAIN CP/M ENTRY POINT i
| FCB DB @1, 'PAYROLLADAT',90,00,00,00 |
| DBLOCK DS 16 ;REMAINDER OF FCB - GROUP |
] CR DS 1 ;FCB CURRENT RECORD |
| REC DS 3 ;r@,rl, and r2 |
| o o ;FIRST TEST TO SEE IF |
| ;FILE EXISTS ALREADY |
| ; THEN CREATE IT IF NEEDED |
| CHKOPN LXI D,FCB ; FCB ADDRESS INTO DE]
| MVI C,PFH ;sMOVE SFC 15 INTO C |
| CALL BDOS ;s TRY TO OPEN FILE |
| CPI OFFH ;DOES IT EXIST ALREADY?]
| JNZ EXISTS ;YES -~ DON'T CREATE IT |
| CREATE LXI D,FCB ;FCB ADDRESS INTO DE |
| MVI C,16H ;MOVE SFC 22 INTO C |
| CALL BDOS ;CREATE FILE |
| CPI OFFH ;ERROR ON CREATE? |
| JZ ‘ERR ; YES - GOTO ERR |
| EXISTS . . ;FILE EXISTS - PROCEED |
I I

4-29

Section 4: System Function Calls

FUNCTION 23: RENAME FILE
Entry Parameters:

Register C: 17H
Registers DE: FCB Address

Returned Value:
Register A: Completion Code

This function is used to renaming a file. 1In this case, the DE register
pair contains the address of a buffer which contains 32 bytes. The first
16 bytes reflect the first bytes of the FCB for the existing file name,
while the second 16 bytes are the FCB for the new file name.

If the re-name is successful, the A register will contain a value between @
and 3. An unsuccessful attempt will return a value of @FFH in register A.

Wild card characters may exist in any of the file name or extension

locations, but should be used with care because several files on a given
disc may meet the specified condition and be renamed erroneously.

EXAMPLE: Rename "A:OLDFILE.TXT" to "A:NEWFILE.TXT"

+ +
| |
| BDOS EQU P3@5H ;MAIN CP/M ENTRY POINT |
| FCBA DB @@, 'OLDFILE TXT',00,900,00,00]
| DBLOCKS DS 16 ; REMAINDER OF FCBA - GROUP|
| CRA DS 1 ; FCBA CURRENT RECORD |
| RECA DS 3 ;r@,rl, and r2 |
| FCBB DB @8, '"NEWFILE TXT',900,00,0000 |
| DBLOCKB DS 16 ; REMAINDER OF FCBB - GROUP|
| CRB DS 1l ;FCBB CURRENT RECORD |
| RECB DS 3 ;r@,rl, and r2 I
| o o o |
| LXI D,FCBA ;FCB ADDRESS INTO DE |
| MVI C,17H ;MOVE SFC 23 INTO C]
| CALL BDOS ;RENAME FILE |
] CPI OFFH ;ERROR/NO FILE? |
| JZ ERR ;YES - GOTO ERR |
| OK « o o ;NO - PROCEED |
| |

4-30

Section 4: System Function Calls

FUNCTION 24: RETURN LOGIN VECTOR

Entry Parameters:
Register C: 18H

Returned Value:
Registers HL: Login Vector

This call returns information about which disc drives are on-line. This is
useful in determining which drives are available for specifying as drive
codes in other system function calls.

The login vector is returned in the HL register pair. The H register is
always @@H. Each bit in the H and L register corresponds to one of the
possible 16 drives supported on your HP-86/87. The least significant bit
of L contains the status bit for drive A, while the most significant bit of
H contains the status bit for drive P. This 1is illustrated in table 4-3
below.

Table 4-3. Sample Return Login Vector Byte
HL Register Pair

P|]O|IN|M|L]|]K|JI|I|H|G|F|]E|D|C]B]|A

+— +
+— +

If the status bit for a drive is "@," the drive is not on-line. A value of
"1" signifies that the drive is on-line. Attempts to access drives that
are not on-line should be made with caution: if no disc is present, CP/M
will halt, aborting the program. Warm booting the system is the only
recovery available.

EXAMPLE: Find whether "B" is currently logged

+ +
l I
| BDOS EQU @P@5H ;MAIN CP/M ENTRY POINT |
I e o o I
I MVI C,18H ;MOVE SFC 24 INTO C |
| CALL BDOS ;GET LOGIN VECTOR |
| MOV A,L ;MOVE VECTOR INTO A |
| ANA #2H ;IS BIT FOR B SET? |
| Jz NOT.ON ;NO - B; NOT ON-LINE |
| OK o s :YES - DISC IS LOGGED |
I l

4-31

Section 4: System Function Calls

FUNCTION 25: RETURN CURRENT DISC 2\

Entry Parameters:
Register C: 19H

Returned Value:
Register A: Current Disc

This function returns the disc identifier for the currently selected mass

storage device. The values in register A will be between #§ and 15
corresponding to drives A through P, respectively.

EXAMPLE: Determine whether "E" is current disc

I I
| BDOS EQU @935H ;MAIN CP/M ENTRY POINT |
I . L] L] I
| MVI C,19H ;MOVE SFC 25 INTO C |
| CALL BDOS ;FIND CURRENT DISC |
| CPI @5H ;IS "E" SELECTED? |
| JZ EDISC ;YES - GOTO EDISC |
| NOT.E .« o e ;NO - PROCEED |
I I

4-32

Section 4: System Function Calls

FUNCTION 26: SET DMA ADDRESS

Entry Parameters:
Register C: 1AH
Registers DE: DMA Address

This function is used to specify the location of the disc buffer to be used
in memory for subsequent I/0O to disc.

On cold start, warm start, or Disc System Reset, the DMA address is set to
PP80H, the default mass memory buffer. However, this call can be used to
direct disc I/0 to a 128-byte buffer anywhere in memory. To make this
change, simply load the address of the new buffer into register pair DE and
perform this function call. Since no error is possible, there is no return
value.

EXAMPLE: Assign buffer at 5@@0H as DMA buffer

+ -——+
I I
| BDOS EQU P9@5H ;MAIN CP/M ENTRY POINT I
| MYBUF EQU 5000H ;ARBITRARY ADDRESS IN TPA |
I - . . I
| LXI D,MYBUF ;ADDRESS INTO DE |
| MVI C,1AH ;MOVE SFC 26 INTO C |
| CALL BDOS ; CHANGE DMA ADDRESS |
I o o . ;DISC BUFFER NOW AT 5000H |
I I
+ -+

4-33

Section 4: System Function Calls

FUNCTION 27: GET ADDR (ALLOC)

Entry Parameters:
Register C: 1BH

Returned Value:
Registers HL: ALLOC Address

This function returns information from BIOS to the application program. As
you will see in section 5 of this manual, CP/M maintains several tables of
information for each type of disc. Additionally, a table of information is
maintained for each disc that is on-line.

If this information is necessary for your application, you can request the
address of the "Allocation Vector" for the currently selected drive.

EXAMPLE: Determine allocation vector address

BDOS EQU #205H ;MAIN CP/M ENTRY POINT

STORAL DS 2 ;RESERVE 2 BYTES STORAGE
MVI C,IBH ;MOVE SFC 27 INTO C
CALL BDOS ;GET ALLOCATION ADDRESS
SHLD STORAL ;STORE HL IN MEMORY

4
T
I e o o
.
T

+$—_————— e ——— e 4

4-34

Section 4: System Function Calls

FUNCTION 28: WRITE PROTECT DISC

Entry Parameters:
Register C: 1CH

This function permits the currently selected disc to be write protected

until the next disc system reset or warm boot. Any attempt to write to a
disc after this will result in an error.

EXAMPLE: Write protect disc "A"

| |
| BDOS EQU 6205H ;MAIN CP/M ENTRY POINT |
I l
| MVI E,80H ;CODE FOR DRIVE A INTO E |
| MVI C,0EH ;MOVE SFC 14 INTO C I
| CALL BDOS ;SELECT DISC A |
| MVI C,1CH ;MOVE 28 INTO C |
| CALL BDOS ;WRITE PROTECT DISC A |
I ¢ o o l
| I

4-35

Section 4: System Function Calls

FUNCTION 29: GET READ/ONLY VECTOR

Entry Parameters:
Register C: 1DH

Returned Value:
Registers HL: R/O Vector Value

This function returns the current read/write status on each drive on-line.
As you know, SFC 28 can make a disc read-only or write protected. Also,
CP/M will force a disc to read-only if it is changed during processing.
However, this call will report such a change only if some disc operation is
performed on that drive prior to this function call. That is, CP/M does
not mark the newly entered disc as read-only until it has some reason to
perform an operation on that disc.

As in SFC 24, the HL register is returned with the status of each drive
reflected in appropriate bits. The HL register pair will reflect the
status of drives A through P. The least significant bit reflects the
status of the A drive.

Table 4-4. Sample Return Read-Only Vector
L Register Only

o4

P] OIN|IM|JL|K|]JII|II|JH|G|F|IE|D|CI|BI|A]|
+ +

+ —-—

A bit value of "@" indicates the corresponding drive is not read-only,
while a value of "1" indicates the drive is read-only.

EXAMPLE: Determine whether all disc are read/write

I I
| BDOS EQU 0005H ;MAIN CP/M ENTRY POINT |
I I
| MVI C,1DH ;MOVE SFC 29 INTO C |
[CALL BDOS sRETURN VECTOR |
| MOV A,L sMOVE VECTOR INTO A]
| OR H ;CHECK UPPER HALF OF VECTOR|
| CPI #0H ;ARE ALL DISCS R/W? |
| K2 ALL ;YES - GOT ALL]
| NOTALL . . . ;NO - AT LEAST ONE IS R/O |
! I

4-36

Section 4: System Function Calls

FUNCTION 3¢: SET FILE ATTRIBUTES

Entry Parameters:
Register C: 1EH
Registers DE: FCB Address

Returned Value:
Register A: Completion Code

The Set File Attributes function allows programmatic manipulation of
permanent indicators attached to files. In particular, the R/0 and system
attributes (tl1' and t2') can be set or reset. In the following
explanation, a ' behind a FCB byte reference refers to the most significant
bit of the specified byte. For example, f1' is the high-order bit of the
first byte of the file name in the FCB.

The DE register pair addresses an FCB containing a unique file name with
the appropriate attribute bits set as desired. That is, bytes £5 through
f8 and tl1 through t3 have their high order bits set to the desired new
values. SFC 30 searches for a matching file name, and changes the existing
directory entry to contain the selected indicators. Indicators f1' through
f4' are not presently used, but may be useful for applications programs,
since they are not involved in the matching process during file open and
close operations. Indicators f5' through £8' and t3' are reserved for
future system expansion.

EXAMPLE: Make 2 file read/only

+—— +
[|
| BDOS EQU @005H ;MAIN CP/M ENTRY POINT |
| FCB DB @@, 'PAYROLLADAT' ,00,00,00,00 |
| ROFLAG EQU FCB+9 ;BYTE tl I
| SYSFLG EQU FCB+10 ;BYTE t2 |
| DBLOCK DS 16 ; REMAINDER OF FCB - GROUP |
| CR DS 1 ; FCB CURRENT RECORD |
| REC DS 3 ;rd,rl, and r2 |
| .« o . |
| LXI H,ROFLAG ;LOAD BYTE ADDRESS IN HL |
| MOV A,M ;REQAD BYTE INTO A |
| ADI 80H ;SET HIGH BIT I
| MOV M,A ;:WRITE BYTE BACK TO FCB |
| LXI D,FCB ; FCB ADDRESS INTO DE |
I MVI C,1EH ;MOVE SFC 3¢ INTO C |
| CALL BDOS ;SET FILE ATTRIBUTES [
| CP1 gFFH : ERROR/NO FILE? |
| JZ ERR ;YES - GOTO ERR [
| OK .« . ‘ ;NO - PROCEED I
| I

4-37

Section 4: System Function Calls

FUNCTION 31: GET ADDR (DISC PARMS)

Entry Parameters:
Register C: 1FH

Returned Value:
Registers HL: DPB Address

As mentioned in SFC 27, CP/M maintains a variety of tables in memory for
BIOS. These are discussed in section 5.

One of the tables used by CP/M is the "disc parameter block" (DPB), which
maintains information on each type of disc on the system.

This disc parameter block should be considered informational only, and not
to be modified by your application.

EXAMPLE: Return address of disc parameter block

I I
| BDOS EQU @@@5H ;MAIN CP/M ENTRY POINT I
| DPB DS 2 ;RESERVE 2 BYTES |
I e o . I
| MVI C,1FH ;MOVE SFC 31 INTO C |
| CALL BDOS ;GET DISC PARM ADDRESS |
| SHLD DPB ; STORE HL IN MEMORY |
I I
I I
+ +

4-38

Section 4: System Function Calls

FUNCTION 32: SET/GET USER NUMBER

Entry Parameters:
Register C: 2¢H
Register E: @FFH (get) or
User Number (set)

Returned Value:
Register A: Current User Number or
(no value)

This function permits the application to programmatically read or write the
current user number. The user number determines to which files a
particular program (or user) has access.

To determine the current user ID, pass @FFH in register E. The user number
will be returned in register A.

To change to a new user ID, pass that user number in register E. In this
case, the return value in A has no significance.

The user number should be in the range of @ through 31. If a request is

made to change to a user number out of this range, the value of (E MOD 32)
will be the user number selected.

EXAMPLE: Read user number and set to 1

| |
| BDOS EQU 900@5H :MAIN CP/M ENTRY POINT |
| .« o . |
| MVI E,dFFH ;SET UP READ CODE |
[MVI C,20H ;MOVE SFC 32 INTO C |
| CALL BDOS ;GET USER NUMBER |
| CPI @1H ;IS USER NUMBER = 1? [
| JzZ OK :YES - GOTO OK [
| SET MVI E,01H :SET UP WRITE CODE |
[MVI C,20H ;MOVE 32 INTO C |
| CALL BDOS ; SET UER NUMBER |
| OK .« o . ;USER NUMBER NOW 1 |
| |
+- +

4-39

Section 4: System Function Calls

FUNCTION 33: READ RANDOM

Entry Parameters:
Register C: 21H
Registers DE: FCB Address

Returned Value:
Register A: Completion Code

This function, 1like the Sequential Read function above, reads a 128-byte
physical record from a selected disc file. However, this function reads
the record number stored in the last three bytes of the FCB rather than the
record indicated in "cr."

You will remember that a file is considered a sequence of up to 65535
physical records of 128 bytes each. You will also remember that "random
access" files require an additional three bytes in the FCB: r#@, rl, and r2.

The r#, rl byte pair 1is treated as a double-byte word that contains the
physical record number to be read. Byte r@ is the least significant 8
bits, while byte rl contains the most significant bits. Byte r2 1is for
system use, and should be set to 2zero. A non-zero value 1in r2 indicates
overflow past end-of-file, and is an error.

In order to access a file with this call, the base extent (extent @¢H) must
have been previously opened. This is true even if the base extent does not
contain the desired record.

Upon each random read call, the 1logical extent ("ex") and current record
("cr") fields within the FCB are automatically set by CP/M. Unlike
sequential read, a random read will not increment "cr" after each read, nor
will it increment rg,rl. Because CP/M uses the "cr" and "ex" pointers
during random reads, it is possible for an application to use sequential
reads and random reads within the same file. Remember, though, that a
sequential read updates "cr" after it reads the record. This means that,
if a sequential read is done immediately after a random read, both read
calls will return the same buffer.

To set wup a random read, load the address of the FCB in the DE register
pair and load r@/rl with the desired record number. Remember: r@ contains
the least significant bits! Proceed with a call to #@@5H as with all other
system function calls to execute the function.

If the read 1is successful, the A register will contain a #¢H and the DMA
buffer will contain the physical record. If there is an error, the value
returned in A will indicate the nature of the problem. The only errors
associated with this function are indicated in the following table.

4-49

Section 4: System Function Calls

Table 4-3.
Random Access Error Codes
| |
| @1H Reading Un-Written Data. |
] #3H Cannot Close Current Extent. |
| g4H Seek to Un-Written Data. |
| @6H Seek past end-of-file. |
| I

Error codes @2H and @5H are not used in this call, and should not occur as
a result of a random read.

Error codes @1H and @4H occur when a random read attempts to access a block
of data which has not previously been written, or to an extent which has
not been created. Error code @3H should never occur in a normally
functioning systen. Should it occur, either re-open the file or re-read
the record. These two actions should correct any problem.

Error code @6H occurs whenever the value in r2 is non-zero.

EXAMPLE: Random read record in rd,rl

I I
| BDOS EQU #205H ;MAIN CP/M ENTRY POINT |
| FCB DB @@, ' PAYROLLADAT' ,00,00,09,00 !
| DBLOCK DS 16 ; REMAINDER OF FCB - GROUP |
| CR DS 1 ; FCB CURRENT RECORD I
| REC DS 3 ;r@,rl, AND r2 |
I . o . l
I LXI D,FCB ; FCB ADDRESS INTO DE |
| MVI C,21H ;MOVE SFC 33 INTO C |
| CALL BDOS ;s READ RANDOM RECORD |
! CPI @0H ;ANY ERRORS? |
| Jz OK ;NO - GOTO OK |
| CPI @1H ;ERROR 17? |
I Jz ERR1 ; YES - GOTO ERR1 |
I . e ;NO — CHECK NEXT ERROR |
| I

4-41

Section 4: System Function Calls

FUNCTION 34: WRITE RANDOM

Entry Parameters:
Register C: 22H
Registers DE: FCB Address

Returned Value:
Register A: Completion Code

This function writes a record of data to a random access file.

This call is similar to the random read function discussed earlier. The
data to be written is stored in the DMA buffer, and the record number to be
written is stored in the r@,rl byte pair. Finally, the DE register pair is
loaded with the address of the FCB, and the call is made.

As with random read, the proper values of "cr" and "ex" are calculated by
CP/M, but are not incremented after the record is written. Management of
record pointers is left to the application.

A successful write operation returns a @@H in register A. The same error
codes apply as with the random read above, with one additional code. A
return value of @5H in register A indicates that a new extent cannot be
created because of directory overflow.

As with random read, sequential file access can be mixed with random access

in the same application. However, the proper management of the appropriate
pointers is critical to insuring expected results.

EXAMPLE: Random write record r@,rl

I |
| BDOS EQU A005H ;MAIN CP/M ENTRY POINT i
| FCB DB @@, ' PAYROLLADAT' ,90,00,00,00 |
| DBLOCK DS 16 : REMAINDER OF FCB - GROUP |
| CR DS 1 ; FCB CURRENT RECORD |
| REC DS 3 ;rd,rl, and r2 |
I I
] LXI D,FCB ; FCB ADDRESS INTO DE]
| MVI C,22H sMOVE SFC 34 INTO C |
] CALL BDOS sWRITE RECORD |
| CPI @oH ; ERROR ON WRITE? |
| JZ OK ;NO - PROCEED TO OK |
| CPI @5H ;YES - ERROR 57 |
| JZ ERRS ;ERROR IS 5 }
I

I I

4-42

Section 4: System Function Calls

FUNCTION 35: COMPUTE FILE SIZE

Entry Parameters:
Register C: 23H
Registers DE: FCB Address

Returned Value:
Random Record Field Set

This function call is wused to determine the current file size. To
calculate file size, this call returns the "next available record number."

To execute this call, the address of the FCB is loaded into the DE register
pair. The FCB must include the random bytes r@, rl and r2.

CP/M calculates the record number one greater than the last record in the
file, and returns that value in the r@,rl byte pair. If the highest record
number is 65535, the record number will overflow into byte r2, signifying
that no more records may be written to the file.

The size provided by this call is the physical size of the file assuming it
was written sequentially. Note that a random access file may contain
"holes," and the highest record number may not correspond to the actual
number of records contained in the file. For example, if only record
number 65536 is written to a random access file, this call will return a
size of 65536 records, even though only one block has been allocated.

Data can be appended to the end of an existing file by simply making this

call to set the random read bytes to the end of the file. Then any
subsequent write operations will be appended onto the end.

EXAMPLE: Compute file size of specified file

R T +
| |
| BDOS EQU P2005H ;sMAIN CP/M ENTRY POINT i
| BHOLD DS 2 ;RESERVE 2 BYTES |
| FCB DB 0@, 'PAYROLL?DAT' , 00,006,090 ,00 |
| DBLOCK DS 16 ; REMAINDER OF FCB - GROUP |
] CR DS 1l ; FCB CURRENT RECORD]
| REC DS 3 ;rd,rl, and r2 |
| .« o e |
| LXI D,FCB ;FCB ADDRESS INTO DE |
| MVI C, 23H ;MOVE SFC 35 INTO C]
] CALL BDOS ;COMPUTE FILESIZE]
| LHLD REC ;LOAD HL FROM REC |
| SHLD HOLD ;AND STORE IT IN MEMORY]
| e o |
I I
+— —_ - ————— e 4

4-43

Section 4: System Function Calls

FUNCTION 36: SET RANDOM RECORD

Entry Parameters:
Register C: 24H
Registers DE: FCB Address

Returned Value:
Random Record Field Set

This function call is used to set up an FCB for a random read or write
following a sequential operation to the desired record.

To access this information, 1load the DE register pair with the address of
the FCB. When the call is made, CP/M loads the actual record count into
the rf,rl byte pair. After this is done, the FCB is set up for random
access.

EXAMPLE: Set record number to value from memory

| I
| BDOS EQU P205H sMAIN CP/M ENTRY POINT]
| HOLD DS 2 ;RESERVE 2 BYTES |
| FCB DB @9, 'PAYROLL?DAT' ,00,00,00,00]
| DBLOCK DS 16 ;REMAINDER OF FCB - GROUP |
| CR DS 1 ;FCB CURRENT RECORD I
| REC DS 3 ;rd,rl, and r2 |
| |
| LHLD HOLD ; LOAD RECORD FROM MEMORY |
| SHLD REC ;MOVE INTO r4,rl]
| LXI D,FCB ;FCB ADDRESS INTO DE |
] MVI C,24H sMOVE SFC 36 INTO C |
] CALL BDOS ;SET RANDOM RECORD |
| I
[I

4-44

Section 4: System Function Calls

FUNCTION 37: RESET DRIVE

Entry Parameters:
Register C: 25H
Registers DE: Drive Vector

Returned Value:
Register A: @@H

This function permits the status of any disc(s) to be reset with a single
call.

Each bit within the DE register pair represents the state to which each
disc is to be set. The least significant bit of E represents drive A,
and the most significant bit of D represents P. If any bit is set to "1,"
the drive 1is to be reset to read/write status. A value of "™ means no
change should be made in the status. It 1is the login vector bit that is
actually reset by this call.

EXAMPLE: Reset all discs

I I
| BDOS EQU @00 5H ;MAIN CP/M ENTRY POINT |
I - - L] '
] LXI D,@FFFH ;SETUP ALL DISC CODES |
| MVI C,25H ;MOVE SFC 37 INTO C |
| CALL BDOS ;sRESET DISCS |
l L d L] * l
I I

4-45

Section 4: System Function Calls

FUNCTION 38: UNUSED
FUNCTION 39: UNUSED

FUNCTION 40: WRITE RANDOM WITH
ZERO FILL

Entry Parameters:
Register C: 28H
Registers DE: FCB Address

Returned Value:
Register A: Completion Code

This function is very similar to SFC 34 in that both calls result in a
random write. Data is moved from the DMA buffer to the disc file.
However, when the first record is written to any newly allocated group, SFC
34 does not alter any (old) existing data in that group. This call will do
a zero fill, which assures that no "garbage" data exists in the currently
unused areas of those groups allocated to your file.

EXAMPLE: Write record rd,rl with zero fill

+— +
| |
| BDOS EQU 2@05H ;MAIN CP/M ENTRY POINT |
| FCB DB @@, '"PAYROLLADAT' ,00,00,00,00 |
| DBLOCK DS 16 ;REMAINDER OF FCB - GROUP |
| CR DS 1 ;FCB CURRENT RECORD |
| REC DS 3 ;r@,rl, and r2 |
| .« o I
| LXI D,FCB ;FCB ADDRESS INTO DE |
| MVI C,28H ;MOVE SFC 4@ INTO C |
| CALL BDOS ;WRITE RANDOM]
| o o o |
[[

4-46

Section 4: System Function Calls

4.3 Extended System Function Calls

To address the added features of HP Series 8§ Personal Computers, several
additional function calls have been added to standard CP/M. These
functions allow you to utilize the power of your system within the CP/M
environment, so your application can remain independent of the physical
level device control.

Rather than add a variety of system function calls, and possibly interfere
with future CP/M enhancements, all extended calls are treated as
"sub-functions" within a single CP/M function call.

The HP extended calls follow all the conventions required by standard CP/M.
Specifically, the HP function number 255 (@FFH) is 1loaded into the C
register. The B register contains the subfunction number, and the other
register pairs are used to pass information to the sub-function routine.
In all cases, single byte returns are made in the A register and double
byte returns are made through the HL register pair.

Table 4-4. HP Extended System Function Calls

+- +
| I
| CP/M SuB OPERATION |
| CALL FUNCTION DESCRIPTION |
I |
| 255 /] RETURN CP/M IDENTIFIER |
| 255 111 RETURN HP VERSION NUMBER |
| 255 113 READ MEMORY BUFFER]
| 255 119 WRITE MEMORY BUFFER |
] 255 120 RETURN REGION BOUNDS |
| 255 122 CHAIN TO SPECIFIED PROGRAM |
] 255 126 INTERROGATE AND ALTER JUMP VECTOR |
| 255 127 RETURN MACHINE NUMBER]
I I
+ - —_—— e s

Table 4-5 illustrates a sample sub-program using an extended function
call. Note that, instead of using two "MVI" commands, a single "LXI
B,FUNUM" could be used to load register pair BC if "FUNUM" was equated to
74FFH.

4-47

Section 4: System Function Calls

Table 4-5. Sample HP Extended System Function Call
| I
| BDOS EQU @@5H ;BDOS Entry Point |
| HPFUN EQU OFFH ;HP Extended Call]
| SUBFN EQU 74H ;Desired Sub-Function |
| ORG 21000 ;Like a good program |
| START MVI B, SUBFN ;Load sub-function |
I MVI C,HPFUN ;Load HP function |
| CALL BDOS ; Execute call |
| RET ;To calling program |
| END I
| I

Now you've seen

rest of this section will introduce you to each, and will

use these calls.
other sections.

4-48

a quick overview of

In several cases,

the HP extended function calls.

The

show you how to

additional discussion is included in

/‘\

Section 4: System Function Calls

HP FUNCTION ¢ : RETURN OEM NUMBER

Entry Parameters
Register Pair BC: @@FFH

Return Parameters
Register Pair HL: HP OEM Version

This sub-function 1is used to verify that the operating system which is
currently loaded includes the HP extended system function calls as part of
BDOS. This call should be used at the start of every program in order to
verify that the system being used is an HP-86 or HP-87.

The return value passed in the HL register pair indicates the OEM number of
the supplier of CP/M. The HP Series 80 OEM number is 517, or @#1@5H. If
the CP/M currently running has been provided by HP, this will be the value
returned in the HL register pair. Any other value indicates the CP/M may
not execute the other HP extended function calls.

EXAMPLE: Verify HP CP/M Identification

+——= +
I |
| BDOS EQU PP@5H ;MAIN CP/M ENTRY POINT |
| HPZERO EQU @OFFH ;SUB-FUNCTION ZERO |
| . o . |
| LXI B,HPZERO ;SB-FUNCTION IN BC I
| CALL BDOS ;RETURN NUMBER INTO HL I
| MoV A,L ;MOVE ID INTO A |
| CPI @5H ;IS THIS HP CONTRACT ID? |
| MOV A,H |
| CPI @2H I
| JINZ NONHP ;NO - GOTO NON-HP ROUTINE |
| OK .« o . ; YES - PROCEED |
I I

4-49

Section 4: System Function Calls

HP FUNCTION 111: Return HP VERSION NUMBER

Entry Parameters
Register Pair

Return Parameters
Register Pair

This sub-function returns the HP version number of the operating system in
the HL register pair. This version number is interpreted as follows. The
high four bits of the H register are added to the ASCII value for the
letter A to determine the version letter (A=¢, B=1,). The 1low four
bits of the H register and the high and low four bits of the L register
each represent a BCD digit making a revision number of the form X.XX. For
example, if the HL register pair contains @10@H, the operating system is
version "A," revision 1.04.

4-50

Section 4: System Function Calls

HP FUNCTION 113: READ MEMORY FILE BUFFER
Entry Parameters Register Pair BC: 71FFH
Return Parameters Register Pair HL: Address of Buffer

This sub-function permits a program to read a memory buffer 1left by a
previous program. In this manner, programs can receive identifying data
from a "father" program, or even from a previous portion of itself.

To access the buffer, load the BC register pair with 71FFH. If no buffer
was left, the HL register pair will contain @@@1H upon return. If a valid
buffer is available, its address will be stored in HL upon return.

The "father" program must locate the buffer within the TPA, at a location
which is not destroyed by the CCP or by the "son" program when a warm start
is executed. IF THIS IS NOT DONE, THIS SUB~FUNCTION MAY INDICATE A VALID
BUFFER ADDRESS WHICH CONTAINS POSSIBLY INVALID DATA.

If a buffer is available, it will be identical in format to the buffer
described under sub-function number 119.

EXAMPLE: Determine which program called "me"

+ -+
| I
| BDOS EQU P0@5H ;MAIN CP/M ENTRY POINT |
| PASS EQU 71FFH ; SUB-FUNCTION 113 |
| TMEP DS 2 ;RESERVE 2 BYTE STORAGE |
I .« o e I
| LXI B, PASS ; SUB-FUNCTION INTO BC |
| CALL BDOS ;READ BUFFER ADDR INTO HL |
I MOV A,H ;TEST H FOR ZERO I
| CPI ggH ;HIGH BYTE ZERO? I
| JNZ OK ;NO - HL <> @@¢1, HENCE OK |
| MOV A,L ;H=0. ISL =1 |
I CPI @1H ;IS L =17 |
| JZ NOBUF ;HL = 9¢@1. NO BUFFER |
| OK SHLD TEMP ; KEEP ADDRESS IN TEMP |
[.« o ;ADDRESS NOW STORED |
I |

4-51

Section 4: System Function Calls

HP FUNCTION 119: WRITE MEMORY FILE BUFFER

Entry Parameters
Register Pair BC: 77FFH
Register Pair DE: Address of Buffer

Return Parameters
Register Pair HL: Non-zero

This sub-function allows a program to write information to a memory buffer
to be read at a later time. The buffer, maintained by BIOS in the TPA, can
be subsequently read by the same program, or by a "son" program initiated
using the CHAIN sub-function described below, as long as the buffer area of
the TPA is not destroyed.

The format of the buffer used in this sub-function is shown in table 4-6.

Table 4-6. Write Memory File Buffer

FLAG MEMORY BUFFER

DE + ﬁ + 1 L] L] L] . . L] L] n

Fom—————

e
T
e
+

The FLAG byte is a numeric parameter used to ensure that memory buffers do
not remain active indefinitely. Whenever a warm boot is performed, the
FLAG is incremented by 2, and any buffer with a FLAG value greater than 3
is purged. By writing your original buffer with a value of # or 1, the
buffer will remain through the next warm boot (or chain). However, the
buffer will contain a value of 2 or 3 in the "son" program.

When the "son" terminates, the value will be incremented to 4 or 5 and will
be deleted. The net effect of this FLAG is that, when initially set to @
or 1, the buffer will remain valid for the "son" program only.

The MEMORY BUFFER can contain any data desired, although any programs which

exchange data via this memory file should "know" the format of any data
which was left.

4-52

&

Section 4: System Function Calls

Once the buffer is established, the program should load the address of the
buffer into the DE register pair. When the sub-function call is made, the
address of the buffer will be stored by BIOS. As with sub-function 122,
CHAIN TO PROGRAM, the user must assume the responsibility to locate the
buffer in an area of memory which will not be over-written by the CCP. 1In
this case, there is the additional responsibility of placing the buffer in
the TPA such that the program which will read the memory buffer will not
over-write the buffer as it is loaded. To safely position the buffer, HP
sub-function 120 can be used to determine the start of the CCP. Be certain
to position the buffer such that the last byte of the buffer is at or below
this boundary address. Then, make sure the "son" program is no larger than
the starting address of the buffer.

If a program has performed this sub-function and subsequently needs to
erase the buffer and not leave any data, the subfunction can be called a
second time with a value of @@0PH in the DE register pair. This has the
effect of cancelling the buffer.

Careful use of this call can save time when small segments of data are to
be exchanged within or between programs.

EXAMPLE: Leave current program name for "son"

| I
| BDOS EQU @P35H ;MAIN CP/M ENTRY POINT |
| MEMBUF EQU 77FFH ;SUB-FUNCTION 119 |
I e e o I
| LXI B,MEMBUF ;s SUB-FUNCTION IN BC |
| LXI1 D,MYNAME ;ADDR OF BUFFER IN DE |
| CALL BDOS ;i "WRITE' BUFFER |
I e o o I
| ORG 5000H ; RE-POSITION PC |
| DB gH ; FLAG |
| MYNAME DB ' FATHER' ; LEAVE CURRENT PROGRAM |
[o o o ;NAME IN MEMORY AT 50@0H I
I |

4-53

Section 4: System Function Calls

HP FUNCTION 12@: RETURN REGION BOUNDS

Entry Parameters
Register Pair BC: 78FFH
Register E: Request Code

Entry Parameters
Register Pair HL: Return Address

This sub-function permits an application to determine the bounds of each
region of CP/M. This can be useful in calculating the available memory
space for buffers and other memory storage tables.

To request the bounds on a particular region, simply 1load the appropriate
request code into register E. The codes and their meanings are shown in
table 4-7. Refer to table 2-1 for an illustration of the CP/M memory map.

Table 4-7. Region Request Parameters

I
Request Code | Boundary Returned
I

[
|
I
I
Start of CCP I
Top of CCP |
Start of BDOS |
Top of BDOS [
Start of BIOS |
Top of BIOS I
Start of Reserved RAM |
Top of Reserved RAM |

I

NSNoonbdkwNhoHD

+
.
T
&4
T

Each of these regions should be familiar to you with the exception of the
"Reserved RAM." This area is actually part of the BIOS, in that BIOS is
defined as that portion of CP/M which is machine specific. No user
application should use any locations in this area.

The address of the requested bound will be returned in the HL register pair

upon return. The most significant byte is in register H, the least
significant in register L.

4-54

Section 4: System Function Calls

EXAMPLE: Determine the last address of the TPA

BOO
BDOS
BOUNDS
MEMTOP

EQU
EQU
EQU
DS
LXI
MVI
CALL
SHLD

0000oH
#00@5H
7SFFH
2

B, BOUNDS
E,1

BDOS
MEMTOP

;CP/M WARM BOOT ENTRY
;MAIN CP/M ENTRY POINT
i SUB-FUNCTION 120
;s RESERVE TWO BYTES

; SUB-FUNCTION IN BC

;TOP OF CCP CODE IN E
;RETURN TOP OF TPA IN HL
;STORE HL IN MEMTOP

f———————

4-55

Section 4: System Function Calls

HP FUNCTION 122: CHAIN TO SPECIFIED PROGRAM

Entry Parameters
Register Pair BC: 7AFFH
Register Pair DE: Address of Buffer

Return Parameters
Register Pair HL: Non-zero

This sub-function permits you to chain to another assembly language (.COM)
file on disc rather than warm boot CP/M. This feature is similar to the
chain feature available in many high level 1languages such as BASIC, but
which is typically unavailable in most implementations of CP/M.

To understand this call, it is necessary to understand what is involved in
performing a warm boot. Essentially, when you perform a warm boot (JMP
#000H) , the CCP 1is reloaded by CP/M. Once CCP is running, it will check
for a file named "WELCOME.COM" on the currently selected disc. If it finds
that program, it will load and execute it as an auto-start program. If no
such file is found, CCP displays "WELCOME?", signifying that no file with
that name was found.

By wusing this sub-function call, you can specify to CP/M that another
program is to be executed instead of returning to the CCP.

To specify that some program, or system command be executed, simply load
the DE register pair with the address of an information buffer. The buffer
should be of the format shown below in table 4-8.

Table 4-8. Chain Program Buffer

I I
| I
| LEN CCP COMMAND BUF |
I I
I I
I I

DE + @ 1 2 . . . « « N

Byte @, LEN, contains the length of the string to be passed to the CCP in
the Command Buffer. The value must be between 1 and 127. Any string
longer than 127 is truncated.

The remaining bytes of the buffer should contain the actual string to be
passed to CCP for evaluation. This buffer is shown above as the "CCP
COMMAND BUFFER." The program which makes this sub-function call must build
the appropriate buffer as indicated above. When this call is actually
executed, the address of the buffer is saved in BIOS by CP/M. NOTE THAT
THE BUFFER ITSELF IS NOT SAVED EXCEPT IN THE TPA! This means that the user
must take the responsibility of locating the buffer in an area of memory
which will not be destroyed by the CCP when the warm start is executed.

4-56

/\

Section 4: System Function Calls

A program showing the use of this subfunction is shown

in the example

below. 1In the example, the PIP program is invoked to copy a file "OLD.TXT"
to "NEW.TXT".
Example: Chain to PIP and copy "OLD.TXT" to "NEW.TXT"

| I
| BOOT EQU -P000H ;CP/M WARM BOOT ENTRY |
| BDOS EQU #0@5H sMAIN CP/M ENTRY POINT |
] CHAIN EQU 7AFFH ;SUB-FUNCTION 122 |
| BUFFR DB 19, 'PIP NEW.TXT=OLD.TXT' |
' L) * o I
] LXI B,CHAIN ;SUB-FUNCTION IN BC |
| LXI D,BUFFR ;ADDR OF BUFFER IN DE]
| CALL BDOS ;SET UP CHAIN ON BOOT |
| CALL BOOT ;WARM START AND CHAIN |
| END ;END OF ASSEMBLY]

4-57

Section 4: System Function Calls

HP FUNCTION 126: INTERROGATE AND ALTER JUMP VECTOR

Entry Parameters
Register Pair BC: 7EFFH
Register Pair DE: Address of Buffer

Return Parameters

Register Pair DE: Address of Buffer ~
This sub-function permits an application to determine the contents of the
Jump Vector table, and, if desired, to alter the table contents.

In section 5, you will learn more about the "Jump Vector Table" maintained
by CP/M. Briefly, this table is a 1list of "jump" instructions which tells
CP/M the addresses of routines to actually implement the standard system
function calls. 1If, for any reason, your application needs to determine or

alter the addresses in the jump table, this sub-function permits it to do
so.

To make this call, load the BC register pair with 7EFFH. Then load the DE

register Pair with the address of a buffer which includes additional
information.

The buffer takes the format illustrated in table 4-9. Byte # contains the
"jump vector number" which indicates which entry in the table is of
interest. These JVNs are indicated in Table 15-4 which follows. Section 5
contains an extended discussion on the function of each of these jump
vectors.

Byte 1 is a flag which indicates whether to read the jump vector entry into
this buffer or whether to write to the jump vector table from this buffer.
A value of 0@0@H will indicate that this is a read, while a value of @1H will
actually change the jump vector contents.

Table 4-9. Jump Vector Buffer

I

I

I

| JVN FLAG JMP LO HI
[

[DE + 0 1 2 3 4
I

—_—————

If the request 1is a read, CP/M will access the jump vector table in BDOS
and copy the table entry into byte 2 through 4 of this buffer. This is a
jump command of the format: .

"JIJMP XX XX"

4-58

Section 4: System Function Calls

Three bytes are returned in the buffer during an "interrogate" sub-function
call.

low byte of the address in byte 3 and

If the request

non-zero value in HL.

is made to alter the
jump table should be loaded into byte
the contents of the jump table entry

2 through 4.

The single byte opcode for the "JMP" command is in byte 2, with the
the high byte in byte 4.

jump vector, the new contents of the
The call will exchange
with the buffer contents and return a

Table 4-16. Jump Vector Table Entries
| JUN | Jump | Comments |
| |
| @@eH JMP BOOT :Cold Boot Load Address |
| 91H JMP WBOOT ;Warm Boot Load Address]
| 82H JMP CONST ;Check Console Status |
| @3H JMP CONIN ;Read Console Character |
| @4H JMP CCNOUT ;Write Console Character |
| @5H JMP LIST ;Write List Character |
| @6H JMP PUNCH ;Write Punch Character |
| 87H JMP READER ;Read Reader Character |
| #8H JMP HOME ;Move to Track @ on Disc |
| #9H JMP SELDSK ;Select Disc Drive |
| GAH JMP SETTRK ;Set Track Number |
| #BH JMP SETSEC ;Set Sector Number |
| @CH JMP SETDMA ;Set DMA Buffer Address |
| @DH JMP READ ;Read Selected Sector]
| GEH JMP WRITE ;Write Selected Sector |
| @FH JMP LISTST :Check List Status |
| 19H JMP SECTRAN ;Sector Translate Routine |
| I

This call can be useful in the case where an application needs to replace
or enhance

a standard system function call
only be attempted by experienced CP/M and Z-80@ programmers

complexities involved.

although such changes should

because of the

4-59

Section 4: System Function Calls

EXAMPLE: Replace CONIN with routine at address S0@¢H

F————— e e —————— -y

BDOS EQU
JMPVEC EQU
MYADDR EQU
HOLD DS
BUF DS
JVN EQU
FLAG EQU
CMD EQU
ADDR EQU
MVI
STA
MOV
MVI
STA

-

LXI
LXI
CALL

-

LHLD
SHLD
LXI

SHLD

-e

MVI
STA
LXI
LXI
CALL

@905H
7EFFH
5@00H
2

5
BUF+0
BUF+1
BUF+2
BUF+3
A,D
FLAG
M,A
a,3
JVN

B,JMPVEC
D,BUF
BDOS

H,ADDR
HOLD
H,MYADDR
ADDR

a,l

FLAG
B,JMPVEC
D, BUF
BDOS

;MAIN CP/M ENTRY POINT

; SUB-FUNCTION 126
;ADDRESS OF MY 'CONIN'
;TWO BYTE TEMP STORAGE
;RESERVE FIVE BYTE BUFFER
;BUILD BUFFER ELEMENTS
;BY NAME.

; TWO BYTE ADDRESS (LO:HI)
;SET UP A 'READ' CODE
; STORE IN BUFFER
;SET UP A JVN 'READ'
;CONIN JVN NUMBER
;STORE IN BUFFER

NOW READ JVN TABLE
; SUB-FUNCTION IN BC
;ADDR OF BUF INTO DE
; INTERROGATE JUMP TABLE

;ADDR OF 'ADDR' INTO HL
; STORE 'ADDR' INTO 'HOLD!
;ADDR OF MY ROUTINE IN HL
;PLACE IT IN JVN BUFFER

;SET UP A 'WRITE' CODE
;STORE IN BUFFER

; SUB-FUNCTION IN BC
;ADDR OF BUF IN DE
;WRITE JUMP TABLE

e
L
3o
+

4-60

Section 4: System Function Calls

HP FUNCTION 127: RETURN HP MACHINE NUMBER

Entry Parameters
Register Pair BC: 7FFFH

Return Parameters
Register Pair HL: @@57H (87)

This sub-function is used to return the model number of the HP computer on
which CP/M is running. The value 87 identifies the HP 8290¢A CP/M System,
which is used with both the HP-86 and HP-87 Personal Computers. By using
this call in conjunction with the "OEM Number" call described above you
can verify not only that your application is running on an HP-86 or HP-87,
but that it is using a specific release version of HP CP/M.

This sub-function is accessed by passing @FFH in register C and 7FH in
register B. The revision number will be returned in the HL register pair.

EXAMPLE: Check for HP Revision 1 CP/M

+ S —
I |
| BDOS EQU P005H ;MAIN CP/M ENTRY POINT |
| HPMACH EQU 7FFFH ; SUB-FUNCTION 127 |
| I
| LXI B, HPMACH ;SUB=-FUNCTION IN BC |
| CALL BDOS ¢tRETURN MACHINE # IN HL |
| MOV A,H ;MOVE HIGH BYTE INTO A |
| CPI @OH ;IS IT ZERO? |
| JNZ MACERR ;NO - GOTO MACERR |
| MOV A,L ;MOVE LOW BYTE INTO A |
| CPI1 87 ;IS IT ONE? |
| JZ REV1 ;YES - OK |
| MACERR . o ;NO -~ MACHINE ERROR |

4-61/4-62

Section
Vv

BIOS ROUTINES

5.1 Introduction

In previous sections, you have learned how to use BDOS function calls in
your applications. You have seen in those sections all of the information
you will need for most tasks. However, you will occasionally want to know
more about the internal functioning of the operating system, and this
section will provide you with that knowledge.

5.2 BIOS Entry Points

As mentioned earlier in this manual, BDOS provides a uniform method of
accessing physical devices for I/O, and, until now, all I/O was actually
performed by BDOS through system function calls.

You would expect BDOS to access BIOS device drivers to perform the actual
1/0, and this is, in fact, what happens, Within BIOS is a table of " jump"
commands. This table starts at a known location, and each entry is exactly
three bytes in 1length. The entries are in a specific order, so BDOS
"knows" how to access each function based on the offset from the start of
this Jump Vector Table. The actual jump table is illustrated in table 5-1.

Section 5: BIOS Routines

Table 5-1. JUMP VECTOR TABLE

| | |
| Jump | Comments |
! | !
! I
| JMP BOOQOT ;Cold Boot Load Address]
| JMP WBOOT ;Warm Boot Load Address |
] JMP CONST ;Check Console Status |
| JMP CONIN ;Read Console Character |
| JMP CONOUT ;Write Console Character |
| JMP LIST ;Write List Character |
| JMP PUNCH ;Write Punch Character |
| JMP READER ;Read Reader Character |
| JMP HOME ;Move to Track @ on Disc |
] JMP SELDSK ;Select Disc Drive |
| JMP SETTRK ;Set Track Number]
| JMP SETSEC ;Set Sector Number]
| JMP SETDMA ;Set DMA Buffer Address |
| JMP READ ;Read Selected Sector |
| JMP WRITE ;Write Selected Sector |
| JMP LISTST ;Check List Status |
| JMP SECTRAN ;Sector Translate Routine |
! I

As you can see, the jump vectors implement three major groups of functions:
system initialization and restart; simple device I/0; and disc I/0. Each
"JMP" address corresponds to that portion of BIOS which performs the actual
operation requested. Let's examine the functioning of the various entry

points.

BOOT

WBOOT

CONST

CONIN

is called by the cold start loader and is responsible for
system initialization. This routine prints the "logon"
message, sets initial parameters for CP/M, and passes control
to CCP.

is called to perform a warm start. This routine reloads BDOS
and the CCP whenever called. This is the routine accessed
when a user application performs a "JMP" to address @@@0H.
At completion of the warm boot, BDOS passes control to CCP.

checks the status of the console device. If a character is
not ready, a value of @@H is returned in the A register. If
a character is ready, the A register contains @1H upon
return.

reads the next console character into the A register and sets
the high order bit to zero. If there is no character ready,
the routine will wait until a character is available before
returning.

Section 5: BIOS Routines

CONOUT

LIST

PUNCH

READER

HOME

SELDSK

SETTRK

SETSEC

SETDMA

READ

sends the character in the C register to the console output
device. The character is expected to be ASCII data with the
high-order bit set to zero.

sends the character in the C register to the currently
selected 1list device. The character is expected to be ASCII
data with the high-order bit set to zero.

sends the character in the C register to the currently
selected punch device. The character is expected to be ASCII
data with the high-order bit set to zero.

reads the next character from the selected reader device into
the A register. The high-order bit is set to zero. An
end-of-file is returned as an ASCII control-Z (@1AH).

returns the disc head to track 0 on the selected disc device.
On the HP disc drives, this is accomplished by calling SETTRK
with a track value of 4.

selects the disc drive given by the C register as the current
mass storage device. A value of @0H selects drive A, a
value of OFH selects drive P. Each call to SELDSK returns
the address of the Disc Parameter Header (DPH) for the
selected disc in the HP register pair. An invalid disc
identifier will return a 0@@@H in the HL register pair.

positions the disc head at the track address specified in the
HP register pair. The maximum track address for the HP 829¢1
Disc is 42H (66 decimal); the maximum for HP-formatted 9895A
discs is 96H (150 decimal).

positions the currently selected disc head to the sector
specified in the BC register pair. The range should be from
@PH through 1FH (31 decimal) for HP 829@1-type discs and from
@9H through 3BH (59 decimal) for HP 9895A-type discs. The
sector can be selected either before or after the track
selection.

specifies the disc buffer address for all subsequent disc
read or write operations. The address is passed in the BC
register pair. The default wvalue set during system
initialization is @@8@H.

will read data from the currently selected disc at the
current track and sector address. The 128 bytes of data is
stored into the selected DMA buffer. If an error prevents a
successful completion, a value of @1H will be returned in the
A register. A value of @PH indicates a successful
completion.

Section 5: BIOS Routines

WRITE will output 128 bytes from the DMA buffer to the currently
selected track and sector addresses. The A register will
contain a @1H if an error occurs, and a @@H if the write is
sucessfully completed.

LISTST returns the status of the currently selected list device. A
value of @PH is returned in the A register if the list device
is not ready to accept data, while a value of @1H indicates
that data can be sent.

SECTRAN is used to compensate for the interleave factor on a
particular disc. The controller on all HP discs
automatically performs this for you: therefore, HP-formatted
discs require no SECTRAN calls. SECTRAN will receive a
logical sector number in the BC register pair and a translate
table address in the HL register pair. The sector number is
used as an index into the translate table, and the physical
sector address will be returned in the HL register pair.

For simple device I/0, data is presumed to be ASCII. The high-order, or
parity, bit is always set to "@". As with disc files, an ASCII control-Z
is treated as an end-of-file.

In standard CP/M, all 1logical devices are mapped to physical devices
through IOBYTE. The console, reader, and punch devices are established
using escape sequence assignments.

Disc I/0 is actually accomplished by using a sequence of calls to specific
disc access subroutines which perform specific functions.

Typically, a call is made to select a specific disc; then track and sector
addresses are selected; and a DMA buffer is specified. Once this has been
done, the actual I/0O can be performed. Note that this entire sequence is
not necessary for each 1I/O request. For example, once a disc has been
selected it will remain selected until another disc is selected using
SELDSK. However, SECTRK and SETSEC should be used before each I/0 request.

The READ and WRITE subroutines will actually perform the transfer of data
to and from the disc. The controller will perform several re-entries if an
error is encountered during a READ or WRITE operation.

5.3 Disc Tables

As with most disc operating systems, CP/M maintains tables of information
on each type of disc drive as well as on each physical disc. These areas
of memory are known as the Disc Parameter Tables and reside in BIOS.

Disc Parameter Header

Each of the 16 possible disc drives on the HP Series 80 Personal Computer

5-4

/\

Section 5: BIOS Routines

has an entry in the Disc Parameter Header (DPH) table. Each entry is 16
bytes in length. The format of a DPH entry is shown in table 5-2.

Table 5-2. Disc Parameter Header

| I | I |
| Dec | Hex | Symbol | Description |
I I [| I
= — —+ - =t = = m - m . - - - - - - +
| 00 29 XLT Translation Vector |
| 21 gl I
= m e e e e e - - .- - - - = +
| g2 82 SCR Scratch Area #1 |
| 23 g3]
e T +
| ga g4 SCR Scratch Area 2 |
| @5 25 I
I e e +
| g6 @6 SCR Scratch Area #3 |
| a7 @87 |
I et +
| 28 8 DIRBUF Directory Buffer |
| @39 29 I
o - s e e e e e e e m e - - - - +
| 10 PA DPB Disc Parameter Blk |
| 11 7B |
el e T T T p— +
] 12 gc csv Check Sum Vector]
| 13 @D |
e T +
| 14 gE ALV Disc Space Vector I
| 15 or |

The meaning of each of these fields follows.

XLT is a translation vector which is used when a particular disc requires a
sector interleave or skew. This is @ for all HP-formatted discs.

SCR is a scratchpad area for use by BDOS. CP/M will store information in
these bytes.

DIRBUF contains the address of a 128-byte block of memory used as a scratch
area to hold directory information. BIOS uses the area during disc
operations. Note that there is only one DIRBUF area system-wide, so all
DPH entries point to the same buffer location.

DPB contains the address of the Disc Parameter Block for this type of disc.
Each type of disc will have only a single DPB entry.

5-5

Section 5: BIOS Routines

CSV holds the address of a scratchpad area of BIOS used to check whether a
disc has been replaced by another disc. Note that, when CP/M determines
that a disc has been changed, it is marked as "read-only" until a warm boot
or reset disc call.

ALV is the address of another scratchpad area of BIOS. This area, unique
for every DPH, maintains information on available space on the disc.

The SELDSK subroutine described above returns the address of the DPH for
the disc being selected.

Disc Parameter Block

While each drive on the HP Series 8§ Personal Computer has a DPH entry, a
Disc Parameter Block (DPB) is maintained for each type of disc supported on
the system.

At initial release, the CP/M operating system includes two entries in the
DPB: one for the HP 82901 disc and one for the HP 9895A with HP-formatted
discs.

The organization of each DPB entry is illustrated in table 5-3.

The values of the various fields are generally fixed by design, and should
not be altered by the user. These values, and their significance, are
given so you can better understand the internal operation of CP/M.

SPT is the total number of 128-byte sectors per track. It occupies two
bytes.

BSH and BLM are two single byte fields which are fixed in relationship to

the minimum data allocation, or group, size. BSH is the data allocation
block shift factor, and BLM is the data allocation block mask.

5-6

/‘\

Section 5: BIOS Routines

Table 5-3. Disc Parameter Block

¢ + + + -+
Dec	Hex	Symbol	Description
00 @@ SPT Sectors per Track			
gl g1			
a2 @2 BSH Block Shift Factor			
23 @3 BLM Block Mask			
g4 g4 EXM Extent Mask			
@5 @5 DSM Data Max in Groups			
g6 g6			
27 @7 DRM Directory Entries			
28 28 Maximum			
[
29 g9 ALQ Directory Data			
10 gA ALl Directory Data			
11 @B CKS Check Sum Vector			
12 aC			
13 gD OFF OP SYS Reserved Tks			
14 oE			

DSM is the maximum data block number on a particular disc. A block is BLS
bytes in length, and corresponds to a "group." BLS, the minimum disc
allocation size, will be discussed shortly. Since data blocks are numbered
starting with @, the total number of data blocks in DSM+l. Two bytes are
required for this field.

EXM is the extent mask, and is a function of DSM. It requires a single
byte field.

DRM is the total number of directory entries (extents) which can be stored
on the disc. Two bytes are required by this field.

AL@/ALl1 are two single-byte fields used to reserve directory blocks. Each
bit of the ALG/AL1l double word represents a group allocated to directory
entries. Hence, a maximum of 16 groups can be reserved for directory
space.

5-7

Section 5: BIOS Routines

CKS is the size of the directory check vector (CSV) in bytes. It is a two
byte field.

OFF is the number of tracks reserved at the beginning of the disc. Tracks
are reserved for CP/M and for HP standard interchange format. The field is
two bytes in length.

One additional factor, BLS, is calculated as a function of BSH and BLM.
BLS is the size of a "group" on the particular disc. On the HP 829641 disc,
BLS is 1024 bytes (1K); on the HP 9895 disc, the BLS is 4096 bytes (4K).

The CKS value is determined to be (DRM+1l)/4 for removable media on both
types of flexible disc drives.

As mentioned earlier, several DPHs can address the same DPB. On the
HP-86/87, 16 entries exist in the DPH Tables, while two exist in the DPB
Table. Each disc drive requires one DPH, while one DPB exists for each
of the HP 82901 and the HP 9895.

5-8

Section
VI

THE CP/M TEXT EDITOR

6.1 Introduction

In order to prepare source language files for the assembler, or to create
any other type of ASCII text file, there must be a way to input and edit
data from the computer keyboard. There are many ways to create such files,
but the primary tool intended for program development is the transient
program ED.

The ED program is a character oriented text editor which provides the
ability to create, modify, and store ASCII text files such as assembler
source files. It is not a word processor, and should not be considered as
such. It is simply a convenient way to create and edit text files.

To begin the ED, type:
ED filename.extension

The file name and extension must be fully specified. The drive identifier
is optional, unless the file resides on a disc other than the current
drive.

If the specified file exists on the current (or specified) disc drive, a
back-up copy will be created. This back-up will be named the same file
name, with the file extension ".BAK". If the specified file cannot be
located on disc, a back-up file containing zero records will be created,
and ED will assume the file is new.

ED operates on a memory buffer image of the source file. Lines must be

specifically appended into the memory buffer, operated upon, and written to
the new source. This is illustrated graphically in table 6-1.

6-1

Section 6: The CP/M Text Editor

Table 6-1. ED Data Flow ,/~\
+- —_ +
| I
| e —— + tmm———— + e + |
I		I	I			
	SOURCE	--->	MEMORY	--—->	NEW	
	FILE		IMAGE		FILE	
I I I		I	[
e + e + Fm—————— +						
I I

6.2 Memory Image

Within memory, all operations occur at a location known as the "character
pointer," or "cp." It will be useful to remember the “cp" whenever you are
using the editor. In addition, ED maintains a similar pointer in the
source file and in the destination file. The three pointers act
independently, of course, so that ED can keep track of where text should be
located.

When ED is first initiated, the memory buffer is empty. This is true
whether the specified file exists or is new. Lines can then be appended
into the buffer for existing files, or new lines can be inserted at "cp."
In an empty buffer, the "cp" can be considered at the top of memory.

Lines of text within the memory buffer are illustrated in table 6-2. Note
that the "cp" can be moved, using the commands described later in this
chapter.

Table 6-2. Memory Image Buffer

This is the first line of text <CR> <LF>
This is line two of text <CR> <LF>
This is the "current" line <CR> <LF>

While this is the last line <CR> <LF>

. =N
- T
+ +

The position of the "cp" is indicated below line three as a " character.
<CR> and <LF> represent the carriage return and line feed characters, ASCII ~
PDH and @AH, respectively.

6-2

Section 6: The CP/M Text Editor

6.3 ED Commands

The various commands available through ED to operate on the memory buffer
are illustrated in table 6-3 below. The effect and use of each is
described in the discussion which follows. Remember that the up arrow
character (") preceding a character signifies that the control key [CTRL]
is pressed at the same time as the character. For example, “C means
control-C.

Table 6-3. ED Command Summary

Append text from disc.
Begin or bottom of buffer.
Move character positions.
Delete characters.
Exit ED and save file.
Find specified string.
Exit and re-start ED.
Insert text into memory buffer.
Juxtapose string.
Kill lines of text.
Move up or down lines.
Macro definition.
Find with autoscan.
Return to original file.
Move and print pages.
Quit with no file changes.
Read library file.
Substitute string.
Type lines of memory buffer.
Upper/lowercase shift.
Write lines of text to disc.
Output to temporary LIB file.
Sleep.

CR> Move and type lines.

ECHNITOYWOZERrRUHMINDRIRIUDO W D

AN X

o e e e e e —— — —— . — — — — . — —— —— — — — — -+

6-3

Section 6: The CP/M Text Editor

Command: #

Name: Pound Sign

The pound sign is not technically an ED command. However, by
specifying this character wherever a numeric value is permitted in
other ED commands results in the value 65535 being substituted for
the ||#n .

This has the effect of extending the command to all 1lines or
occurrences, depending on the command being used.

Command: A

Name: Append

6-4

The append command copies lines of text from the source file into
the memory buffer. The general form of the command is:

nA

ED maintains a next line pointer in both the input (source) and
output (destination) files. Each occurrence of the "A"™ command
loads one or more lines from the input file into memory starting at
the next line pointer. Lines are appended into the memory buffer at
the position of "cp." The next line pointer is, of course, updated
after each append operation.

If no value is specified before the "A", a single line is read into
memory from the input file. Specifying "#A" will load lines of text
into memory until all lines are appended or until the memory buffer
is full.

Specifying "@A" acts like "#A", except that ED will stop appending
lines when half of available memory is full.

/’\

Section 6: The CP/M Text Editor

Command: B

Name:

Buffer Position

This command is used to move the location of "cp" to either the top
or bottom of the memory text buffer. The format of this command is:

B/-B

To move to the top of the memory buffer (the beginning), specify the
"B" command with no leading sign.

To move "cp" to the end of the memory buffer (the bottom), specify
the command as "-B". Use this form to insert text after the last
existing line in memory.

Command: C

Name:

Character Position

The C command is used to move the "cp" one or more bytes "up" or
"down" in the memory buffer. The general form of the command is:

+/-nC

Specifying a positive or unsigned value causes the "cp" to move to
the right, proceeding to subsequent lines if necessary. A negative
value moves "cp" to the left, and to previous lines as necessary.

Remember, a carriage return is a valid character, and "cp" must be
moved two characters to skip over a CR/LF.

Compare the effect of this command with that of the "L" command,
which moves "cp" lines at a time.

Command: D

Name:

Delete Characters

The D command deletes one or more characters from the memory buffer
relative to the character pointer "cp." The general format is:

+/-nD
A positive or unsigned value deletes characters at and to the right
of "“cp." A negative value causes those characters to the left of

"cp" to be deleted.

Note that deleting a CR/LF has the effect of merging two 1lines of
text!

Section 6: The CP/M Text Editor

Command: E

Name:

Exit

The Exit command is the normal way to terminate an ED session. The
format is:

E

All lines of text are written from memory into the output file. Any
lines which have not been read into memory are automatically copied
from the source file into the output file as well. The original
source file is renamed to extension ".BAK", and the output file is
renamed to the originally specified name.

Command: F

Name:

Find

The F command is used to search memory for a specified character
string. There are two forms of the F command:

nFstring”™2
nFstring[END LINE]

The command searches from "cp" through the end of the memory buffer.
If no value of "n" is given, the first occurrence of "string" is
found. 1If a value is given, that occurrence is found.

The "cp" will be positioned after the last character in "string" if
it is found, or at the bottom of the buffer (-B) if no match is
made.

The search string is terminated by a control-Z ("Z) or an [END
LINE]. The “Z terminator is used to separate multiple ED commands
on a single line. The [END LINE] terminator 1initiates the ED
command line.

To specify CR/LF as part of the string, use control-L (°L).
REMEMBER: The F command operates on text in the memory buffer only.

Use the "N" command to search through the end of a document when
part of it may not be in memory.

)

Section 6: The CP/M Text Editor

Command: H

Name:

Restart ED

The "H" command is functionally identical to using the "E" (exit)
command to copy all lines to the output file, then running ED once
again using the newly created (output) file as input. The format of
the command is:

H
The "H" command accomplishes the following tasks:

o All lines in memory are written to disc.

o Any lines not yet loaded into memory are transferred
to the output file.

The original file is renamed to extension ".BAK".

The output file is renamed to the original file name.
o ED starts again, using the same file name for input.

(o]
(o]

Since the disc I/0 commands operate in a forward direction only
(i.e., "A", "N", and "W"), "H" can be used to effectively move back
in a file.

Also, whenever you use ED for an extended period of time, it is wise
to use "H" often to write all changes you might make to a file to
the disc. This helps minimize the loss of data in case of a power
failure.

Command: I

Name:

Insert Text
The insert command is used to insert (add) text into the memory
buffer at the 1location of "cp." There are three general forms of
the insert command:

I [END LINE]

Istring”z

Istring[END LINE]
The first form is generally used when several lines of text are to
be added to memory. All characters, including CR/LF, are inserted
into the memory buffer until a "Z (control-Z) is typed.
The second form is used to insert a short string with no CR/LF into

the existing memory buffer at "cp." The “Z 1is the string
terminator.

6-7

Section 6: The CP/M Text Editor

The last form is a special case of the insert command. It is

used

to insert a single line of text into the memory buffer at "cp."

In all cases, the insert command causes all characters and lines 1in

memory to be "pushed" down.

Line

numbers are automatically

reassigned as new text is inserted between existing lines.

Several special control characters are defined in the

“H : Same as [BACK SPACE], this

character typed.

insert mode.

deletes the last

"L : Inserts a "CR/LF."

"M : Same as [END LINE] this inserts a "CR/LF."

"R : Re-display current line.

"U : Deletes current line andllists a blank line below.
"X : Deletes current line by backspacing to beginning.
[CONT] : Deletes and displays the previous character.

REMEMBER: Insert mode considers the [END LINE] key as just

character Insert mode

typed!

("CR/LF").

Command: J

Name: Juxtapose String

6-8

This command combines the effects

commands.,
nJstrl”Zstr2”Zstr3”Z

This is how the command functions: ED
end of memory for the nth occurrence
functions exactly as the "F" command.
the memory buffer. This part of the
command. Finally, all characters are
after "str2" until the string "str3"
found, no deletions are made.

of the
The general format of the command is:

Assuming the "J" was successful,

another
is active until a control-Z is

"Insert" and "Delete"

searches from "cp" through the
of "strl". To this point, "J"
Next, "str2" is inserted into
command functions like the "I"
deleted starting immediately
is found. If "str3" cannot be
the

"cp" will be located at the end of "str2".

)

'

Section 6: The CP/M Text Editor

Command: K

Name:

Kill Lines

The kill command is used to delete entire 1lines from the memory
buffer. The format is:

+/-nK

Specifying a positive value of "n" will delete all characters
starting at "cp" until "n" CR/LF characters have been deleted. This
has the effect of killing "n" lines of text.

A negative value of "n" will cause characters previous to the "cp"
to be erased until the nth CR/LF is encountered. This has the
effect of deleting the previous n lines of text.

Note that in the special case of n=1, characters on the current line
are deleted up to the appropriate CR/LF. This means that, if "cp"
is not at the beginning of a line, a "K" command will not delete all
characters on the current line. Rather, only the characters that
follow "cp" will be deleted. The same is true for a "-1K" command,
except that previous characters are deleted.

Command: L

Name:

Line Move

This command moves the "cp" up and down a line at a time in memory.
The general format is:

+/-nL
The "L" command is to the "C" command as "K" is to "D". That 1is,
specifying a positive or unsigned value of "n" will advance "cp"
until n occurrences of "CR/LF." A negative value of "n" will move
up in memory until n CR/LF characters are encountered.

The net effect is that the "cp" will advance or go back n lines.

6-9

Section 6: The CP/M Text Editor

Command: M

Name: Macro Definition

This command allows multiple commands to be executed as many times
as desired, or until an error condition ends the macro. The general
format is:

nM<cmdl><cmd2>...

In this case, each <cmdn> parameter represents a valid ED command
string.

If the value of "n" is @ or 1, the macro executes until an error is
encountered. For example, the end of memory buffer is an error in
the "Find" command. If any other value of "n" is entered, the macro
is executed that number of times.

Command: N

Name:

Find with Autoscan

This command operates on the memory buffer exactly as the "F"
command does. However, this command will automatically scan through
the end-of-file, loading additional text into memory, and writing
lines to the output file, as necessary. The general format of the
command is:

nNstring” 2z

Except for its access to the disc, "N" functions exactly as the "F"
command.

Command: O

Name: Return Original File

6-10

This command is used to restart the current ED session using the
original input file as the source of data. The general format is:

0

The memory buffer is emptied, the output file 1is erased, and the

line pointer in the source file is set to the beginning of that
file.

This command functions like the "“Q" command described below, except
that the edit session continues in this case. The "Q" command
terminates the edit immediately.

e

Section 6: The CP/M Text Editor

Command: P

Name: Print Pages

This command moves the "cp" and prints an entire page of the memory
buffer to the display. The format of the command is:

+/-nP

A page in this case is a unit of 24 lines of text. Page boundaries
exist invisibly in the memory buffer, and are moved about
dynamically.

If a positive or unsigned value of "n" is given, the "P" command
first advances the "cp" to the next page. Then, n consecutive
24-line screens are displayed.

If the value of "n" is negative, "cp" is moved back that number of
pages, and all text from that point to the (original) "cp" location
are displayed.

The special case where n=@ results in the 23 lines which follow the
"cp" being displayed to the screen.

Command: Q

/" Name: Quit

The Q command is used to quit the current session without making any
changes to the file. The format is:

Q

The session is terminated immediately. No text is written from
memory to the output file, since that file will be erased. The
original file is left intact. Note, however, that the backup file
will reflect the contents of the current file, and not reflect the
previous backup file contents.

6-11

Section 6: The CP/M Text Editor

Command: R

Name: Read Library File

The "R" command allows text to be added from an existing disc file.
The general format is:

Rname

The command illustrated above will result in the file "NAME.LIB" on
the default disc drive being read into memory at "cp," in much the
same way as the insert command operates.

The special case command "R" by itself will append the file
"X$$6$8$$. LIB" into memory. This file is normally created using the
"X" command, and the file is treated as a hold file by ED.

This command will only read 1library files, those with a file
extension of ".LIB".

Command: S

Name: Substitute String

6-12

The "S" command is used to replace one string with another string.
The general format of the command is:

nSstringl”Zstring2”Z

The string "string2" replaces "stringl" for the first n occurrences
of "stringl".

Like the "F" command, "S" operates on the memory buffer only.

™

Section 6: The CP/M Text Editor

Command: T

Name: Type Lines

The T command types lines of the memory buffer to the screen. The
general format of the command is:

+/-nT

A positive or unsigned value of "n" causes the next n lines to be
displayed. A negative value of "n" prints the previous n lines of
memory. The position of "cp" is not affected by the "T" command.

If "cp" is positioned at the beginning of a line, all characters on
the 1line are typed. If "cp" is not at the beginning of a line, "T"
by itslf prints only those characters to the right of "cp" through
the CR/LF. A special case of "OT" causes the characters to the left
of the "cp" on the current line to be displayed. By combining these
two commands, the entire 1line may be seen by using the command
"OoTT".

Command: U

Name: Upper/Lower Case Translate

This command causes ED to perform automatic uppercase conversion,
or to end such conversion. The general form of the command is:

+/-U

If a positive or unsigned "U" is typed, all subsequent characters
placed into the memory buffer will be shifted to uppercase. This
is true, regardless of whether or not the characters are entered as
lowercase.

A negative sign before the "U" will result in all text being left as
is. If entered in uppercase, the text will remain uppercase. If
entered in lowercase, the text will remain lowercase.

Note that this command affects the text entered into the memory

buffer only. The effect of upper or lowercase commands is
discussed in the text that follows these commands.

6-13

Section 6: The CP/M Text Editor

Command: V

Name: Verify Line Numbers

This command allows you to disable and re-enable automatic 1line
numbering. The general format of the command is:

+/-V

The command typed with a leading plus sign or no sign turns on the
line numbering. This is the default state when ED is first
executed. If "-V" is typed, line numbering is disabled, and 1line
numbers will not appear.

A special form of the "V" command allows you to determine the amount
of memory available at any time. By typing:

ov

ED prints a summary report indicating the number of bytes currently
free followed by the total number of bytes available. Your file
size, of course, is the second less the first. Both values are
reported as decimal numbers.

Command: W

Name: Write Lines

6-14

This command writes lines of text from the memory buffer to the
output file. The general format of the command is:

nwW

This causes "n" lines of text to be written to the output file,
starting at "cp". Only positive values of "n" are valid.

Using this command allows the user the flexibility to free part of
the memory buffer so that additional lines of text can be appended
from the input file.

/’\

Section 6: The CP/M Text Editor

Command: X

Name:

Block Move

The X command performs an output of a block of text to a temporary
disc file. The format is:

nX
This causes the "n" lines of text in memory to be written to a file
called "X$$$$$$$.LIB" on the currently selected disc device. Lines
are not deleted as they are written to the file.

The file remains active only for the current ED session. It is
erased as part of a normal exit.

Command: Z

Name:

Sleep

This command causes the ED program to wait. The general form of the
command is:

nZ

As the value of "n" increases, so does the delay. When n = 18, the
pause 1is approximately 3 seconds. A value of n = 10@ delays almost
30 seconds.

This command can be used to delay the execution of a subsequent
command. For example, this command can be inserted following a "P"
command to create a pause between the printing of pages of memory.
Generally, this function is more useful within macro definitions.

6-15

Section 6: The CP/M Text Editor

6.4 Sample ED Session

Since the ED program is one which must be used to be understood, a sample
session with ED is illustrated below. Not all of the commands are shown
here, but by working through this exercise you will begin to see which
commands are most useful to your particular editing needs. Comments are
separated from the ED session by semicolons. Note that the ED commands
can be entered 1in either uppercase or lowercase letters.

A>ED TESTED.TXT [END LINE] ;Start ED, creating a new
;file named "TESTED.TXT" on
NEW FILE ;current drive, "A."

*i [END LINE]

l: This is line 1. [END LINE] ;Enter lines of text.
2: While this is line 2. [END LINE]
3: "z ;Control-Z ends insert.

: *bjt [END LINE] ;Top of buffer, type all
l: This is line 1. ;lines of text in buffer.
2: While this is line 2.

l: * [END LINE] ;Cp stays at top of buffer

;and [END LINE] types and advances
;a line, similar to T command.

2: While this is line 2. ; [END LINE] advances and types
2: *i [END LINE] ;a line. Insert at "cp."

2: This is a new line between 1 and 2!

3: "z ;Control-Z ends insert

3: *b#t [END LINE] ;Top of buffer, type all

l: This is line 1. ;lines of text in buffer.

2: This is a new line between 1 and 2!

3: While this is line 2.

l: *2L. [END LINE] ;Advance 2 lines w/o typing.

3: *T [END LINE] ;Type a line.

3: While this is line 2. ;Current line 3.

3: *#14CT [END LINE] ;Advance 14 characters, type

line 2. ;from "cp" to EOL.
3: *ithe original “Z ;Insert at cp, between "is"
sand "line". End w/ Control-Z.

: *b#t [END LINE] ;Top of buffer, type all

1l: This is line 1. ;lines of text in buffer.

2: This is a new line between 1 and 2!

3: While this is the original line 2.

l1: *1L [END LINE] ;Advance 1 line.

2: *T [END LINE] ;: Type the current line.

2: This is a new line between 1 and 2!

2: *sa new"Zan old "2 ;Substitute new for old.

2: *LT [END LINE] ;Advance and type a line.

3: While this is the original line 2.

6-16

Section 6: The CP/M Text Editor

3: *b#t [END LINE] ;Top of buffer, type all
l1: This is line 1. ;lines of text in buffer.
2: This is an old line between 1 and 2!
3: While this is the original line 2.
1l: *E [END LINE] :End of edit. Save file.
A> ;Warm boot after exiting ED.
A>ED TESTED.TXT [END LINE] ;Re-edit file A:TESTED.TXT
: *B#T [END LINE] ;Top of buffer, type all
;:lines of text in buffer.
;Nothing there - memory buffer
;is empty. Must append text.
: *#A [END LINE] ;Append all lines from file.
1l: *B#T ([END LINE] ;Top of buffer, type all
l: This is line 1. ;lines of text in buffer.
2: This is an o0ld line between 1 and 2!
3: While this is the original line 2.
l: *~B [END LINE] ;Go to bottom of buffer
: *+U [END LINE] ;Convert to upper case.
: *I [END LINE] ; Insert text at "cp."
4: This is a new line inserted in uppercase. [END LINE]
5: “2Z ;End insert with Control-Z.
: *~U [END LINE] ;:Preserve upper/lowercase.
: *~LT [END LINE] ;Back a line and type.
4: THIS IS A NEW LINE INSERTED IN UPPERCASE.
;This new line is uppercased
;because the insert command
;was uppercased. Note how
;the "U" feature has been
;toggled.
4: *b#t [END LINE] ;Top of buffer, type all.
1l: This is line 1.
2: This is an old line between 1 and 2!
3: While this is the original line 2.
4: THIS IS A NEW LINE INSERTED IN UPPER CASE.
: *LT [END LINE] ;Advance and type one line,
2: This is an o0ld line between 1 and 2!
2: *s2723%7Z ;Change first 2 to 3.
2: *L2T [END LINE] ;Back a line, type 2.
l: This is line 1.

This is an old line betwen 1 and 3!
*E [END LINE] ;End of edit. Save files
;rename existing file.

6-17/6-18

Section
VII

ASSEMBLY LANGUAGE UTILITIES

The material in this section is devoted to the CP/M commands used for
developing assembly language programs. These include the ASM, LOAD, DUMP,
and DDT transient commands and the built-in SAVE command.

7.1 Introduction to ASM

In order to write computer programs in machine language, some tool must be
utilized to translate English-like program 1lines into binary opcodes which
are meaningful to the Z8# CPU. Such translation does not occur in
interpretive languages such as BASIC. However, true compilers perform this
task from high level languages such as COBOL and Pascal. The translator
program for assembly language source statements is called an assembler.

Several different assemblers are available for 808¢ and 280 computers.
Since the Z8@ instruction set is a superset of the 888¢ instructions, both
280 and 8088 assemblers can be used with your CP/M system. All of these
assemblers generate the same binary opcode for common instructions.
However, the mnemonic commands understood by Z8¢ and 8084 assemblers is
often different.

The assembler provided with your CP/M system is the standard CP/M 8¢8¢
Assembler.

7.2 Using the Assembler

The CP/M Assembler, ASM, accepts a source code input file prepared using
the ED program or some other text editor. The general format of the
command which initiates ASM is:

ASM filename

7-1

Section 7: Assembly Language Utilities

The file name is required to have the file extension ".ASM" in order to be
processed by ASM. The assembler program will produce two output files as
it executes. The first contains the assembled object code as a series of
hexadecimal characters, and is given the same name as the source file with
the file extension of ".HEX". The second output file is called by the same
file name, except the file is of extension ".PRN". This file contains the
printer 1listing of the assembly, and contains the source listing and
comments along with the hex representation of the program. Addresses are
also shown in the ".PRN" file.

If the ASM program is executed using the format above, the source file must
be on the currently 1logged disc, and the two output files will be created
on the same disc. This is true even if ASM is 1loaded from another drive.
For example, if the A disc is the default drive and the ASM program is on
disc B, typing the command below will assume the source and output files
are to be on A.

B:ASM PROG1
To specify another drive for either the source or output files, ASM permits
a three byte coded sequence to follow the file name in the command. While
these three bytes appear to be a file extension, remember that ASM requires
extension ".ASM" and the three bytes are coded instructions. These bytes
direct ASM to other than the current drive. For example:

ASM filename.BCD
is coded as follows:

o The first byte, "B" in the above example, specifies the disc
where the source file is located.

o The second byte, "C" above, specifies the disc where the hex
file called "filename.HEX" will be placed.

o The third byte, "D" above, specifies the disc where the printer

listing file "filename.PRN" will be placed.

If a "2" is specified in the second or third byte positions, the respective
file will not be created. This is useful for test assemblies or when a
listing is not required.

Of course, 1if the currently selected disc 1is the desired drive for all
three files, none of these parameters is required.

Some examples of using ASM are given in table 7-1.

7-2

N

Section 7: Assembly Language Utilities

Table 7-1. ASM Execution Commands

+ + +
I | |
| COMMAND] FILE USAGE |
I I |
| |
| ASM HBS Input: A: HBS.ASM]
| Output: A: HBS.HEX]
| A: HBS.PRN |
| [
| ASM PAY.BCD Input: B: PAY.ASM |
| Output: : PAY.HEX i
| D: PAY.PRN i
| |
| ASM PAY.EAZ Input: E: PAY.ASM |
| Output: A: PAY.HEX |
, (No PAY.PRN) |
| |
+— -+

As mentioned earlier, the assembler source code can be entered into the
".ASM" file using ED, the CP/M Text Editor, or any other text editor that
creates ASCII text files.

Now that you know how to enter source code, and how to use ASM, let‘s look
at what must be in an assembler source file.

7.3 Assembly Language Programming
Program Format

The ASM program expects a line of source code to consist of up to five
fields: a line number, a label, an operation code mnemonic, an operand, and
a comment. Not each 1line requires every field: which are required and
which are optional often depends upon the operation code, or instruction,
in question. Fields are separated by one or more spaces or tab (°I)
characters. Often, however, a programmer will set and use tabs so that a
source program is more readable. Using ED permits such tabbing without any
special action on the part of the programmer.

The general format of a source line is:

line# 1label instruction operand ;comment
Each 1line of assembly 1language code is terminated by a “"carriage
return/line feed," which is automatically generated by ED. Optionally,

multiple source statements may be included on each line by inserting an
exclamation mark "!" between statements.

7-3

Section 7: Assembly Language Utilities

Let's take a closer look at each of these fields.

The LINE NUMBER is an optional field. If included, it should be a decimal
value between 1 and 99999. Neither the sequence nor the interval between
numbers is significant to the Assembler, and the field is 1ignored during
assembly.

This field 1is permitted because some text editors create source files
with leading line numbers. ED does not do so. Generally, ASM source code
does not include line numbers.

The LABEL FIELD 1is an optional field, and can include from 1 to 16
characters. All characters are significant, except that dollar signs can
be inserted within a label to improve readability. The "$" character is
not included in the maximum 16 character count. If no 1line number 1is
specified, the label may start in the first byte of a line. However, if a
line number is included, at least one space must be included between the
line number and the label.

A label may also be followed by a colon (":"), although a space must be
included to separate the label from the instruction field.

All alphabetic characters are treated as uppercase, whether or not entered
as such.

The OPERATION FIELD contains a valid Intel 8088 instruction mnemonic, or an
assembler directive. The valid 8080 mnemonics are included in appendix G,
and the most commonly used are discussed later in this section. An
assembler directive is an instruction to ASM providing information for the
duration of the Assembly. Typically, directives generate no direct output
code.

The OPERAND FIELD, discussed in depth below, wusually contains a numeric
value, an address, a register designation, or a constant. The operand can
also be an expression which evaluates to one of the above.

The COMMENT FIELD is included in the ASM listing, but is otherwise ignored
by the Assembler. Of course, no comments are included in the hex output
file, and require no memory in the fully assembled and loaded program.

All characters on a line following the semi-colon and preceding the "CR and
LF" are considered to be part of the comment field and are ignored by ASM.

The Value of a Label

A label, as mentioned above, is used to reference an 8#8¢ statement.
During the assembly, a label is assigned a value. Whether that wvalue is
user specified or an address assigned by ASM depends on the instruction or
directive.

Section 7: Assembly Language Utilities

If the instruction field is an instruction, such as "MVI," the 1label is
assigned the address of the instruction. The label is the address of the
first byte of the statement.

If the instruction field contains an assembler directive, the value
assigned to the label will vary depending on the directive. This will be
discussed in conjunction with each directive later in the section.

Forming the Operand

The operand field, as mentioned above, may contain a label, an expression,
or a data byte. The type to be used in any particular statement is a
function of the instruction specified and the required task. However, we
can generalize about each of these types of operands, and when each might
be useful.

When a LABEL is included in the operand field, it can be either an 8-bit
value or a 16-bit address, depending upon the instruction labeled. If the
label appears on a line with a 288 instruction or a define memory
instruction, the label 1is replaced with the address of the instruction or
first data byte.

If the current labeled line contained a "EQU" or "SET" assembler directive,
the 1label assumes the value of the operand field in that (labeled)
statement. Whether the value assigned to the 1label in the current line
will be an 8-bit or 16-bit instruction will depend on the instruction
included on the current line. If the instruction requires an 8-bit value,
only the least significant 8 bits of the labeled statement's operand will
be used. When the instruction expects a 16-bit value, a full 16 bits are
made available as the 1label value. Leading zeros are appended as
necessary.

When a label appears in an operand field, its value is substituted by ASM.
Remember: the VALUE of a label is an ADDRESS of or the label's OPERAND in
an "EQU" or "SET" directive.

The operand field can contain a NUMERIC CONSTANT. This is always a 16-bit
value, but may be specified in any one of several bases. The base, or
radix, of a numeric constant is determined by the radix indicator which
follows the value. Valid radix indicators are given in table 7-2. If no
radix indicator is specified, the value is assumed to be base 10, decimal.

Section 7: Assembly Language Utilities

Table 7-2. Radix Indicators

I		
INDICATOR	RADIX	NUMBER BASE
B Binary Base 2		
0 Octal Base 8		
0 Octal Base 8		
D Decimal Base 10		
H Hexadecimal Base 16		
I		

The letter "Q" is provided as an alternate specifier for base 8 since the
letter "O" is so easily confused with the digit "@". Either can be used
interchangeably.

A constant is therefore composed of a string of wvalid digits in the
selected base. For example, in addition to numeric characters common to
base 2, base 8, and base 1@, the following alphabetic characters are
permitted in base 16: A, B, C, D, E, and F. However, the leading digit of
a hex numeric constant must be numeric in order for the assembler to
recognize the field as a value and not as a label. Placing a leading zero
before a hex value will accomplish this task.

As with labels, a dollar sign may be embedded in a numeric value to improve
readability.

Table 7-3 contains examples of valid numeric constants in the permitted
bases. Notice that lowercase radix indicators are treated as if they were
uppercase.

Table 7-3. Sample Valid Numeric Constants

3738 4382D 1111$01015000050110
3738h @BCDH 177$77Q 1777770

+————t

Remember: a numeric constant, regardless of 1its specified base, must
evaluate to a 16-bit binary value. If more than 16 bits are provided, ASM
will truncate the number to the most significant 16 bits.

7-6

Section 7: Assembly Language Utilities

STRING CONSTANTS can also be specified 1in the operand field for both
directives and instructions, Multiple character strings are formed by
enclosing the desired string in single quotes ('). In most cases, the
string length is restricted to one or two ASCII characters, depending on
the instruction which will operate upon the string. The "DB" directive
described later is an exception to this rule.

All strings must be fully contained on a single line of source text, thus
permitting the "!" character within the string. Also, strings may never
exceed 64 characters in length. The single quote character may be included

in a string by placing two 51ngle quotes side by side. Examples of valid
string constants are illustrated in table 7-4.

Table 7-4. Sample String Constants

l ‘Al 'MK’ 'MSB' 'Hello' :
l verene '"'If it works, don't fix iti'"? :
: 'The HP-87 Personal Computer’ :
; H

ARITHMETIC EXPRESSIONS, including LOGICAL OPERATORS, may be part of the
operand field. ASM recognizes and can evaluate several operators between
any two arguments "opl” and "op2" as shown in table 7-5. 1In that table,
"opl" and "op2" represent simple numeric constants, one or two
character string constants, or reserved words discussed later in this

chapter. The arguments may also be fully enclosed parenthetical
expressions involving any of the above.

Section 7: Assembly Language Utilities

Table 7-5. Valid Arithmetic Operators

+ + +
I I !
| OPERATION | EFFECT |
I | I
| I
| opl + op2 Unsigned arithmetic sum of opl and op2. |
| opl - op2 Unsigned difference between opl and op2. |
| + op2 Unary plus equivalent to op2. |
| - op2 Unary minus equivalent to (0 - op2). |
| * op2 Unsigned magnitude multiplication. |
| opl / op2 Unsigned magnitude division. !
I |
| opl MOD op2 Remainder function of (opl / op2). |
| NOT op2 Logical complement of op2. |
| opl AND op2 Bit-by-bit logical AND. |
| opl XOR op2 Bit-by-bit logical exclusive OR. |
I |
| opl SHL op2 Result of shifting opl LEFT op2 bits. |
| opl SHR op2 Result of shifting opl RIGHT op2 bits. |
I I

Note that all computations are performed by ASM at the time of assembly.
The expression which results must be appropriate for the instruction used.
For example, if the instruction expects the expression to evaluate to an
8-bit value, the high-order 8 bits must be zero or an error will result.
Thus, for example, an "ADI -1" cannot be used since the "-1" evaluates to
the 16-bit value @FFFFH. Instead, an expression that zeros the high-order
bits can be used: "ADI (-1 AND @FFH)". The "@FFH" will force the high
eight bits to zero, making the expression acceptable.

As with most high-level programming languages, ASM assigns a precedence of
operation so that the programmer can code expressions without the need for
multiple levels of parentheses. The order of precedence or operators is:

Highest precedence: * / MOD SHL SHR

- +

NOT

AND
Lowest precedence: OR XOR

Operators which appear on the same line above are of the same precedence.
When two or more of these operators appear in the same expression, the
expression is evaluated from left to right. Table 7-6 illustrates several
pairs of equivalent expressions. The expressions on the 1left evaluate as
if the parentheses were placed according to the expressions on the right.

7-8

M

Section 7: Assembly Language Utilities

Table 7-6. Sample Operator Precedence

: a*b+c (a*b) +c :
: a+b*c a+ (b *c) }
: a MODb * ¢ SHL 4 ((a MOD b) * ¢) SHL d II
i a OR b AND c a OR (b AND c¢) i

Finally, there are several Reserved Words and expressions in ASM that
assume special significance in the operand field. These reserved words are
shown in table 7-7 below, and include the names of each of the 8880
registers and the special ASM program counter.

Table 7-7. Reserved Operand Words

| | |
| Reserved Word | Significance |
I l |
| | |
| A | A Register [
I B | B Register or BC Pair |
| C | C Register |
| D I D Register or DE Pair |
| E | E Register |
| H | H Register or HL Pair |
I L | L Register |
| M | Data at address in HL Pair |
| $ | Current PC Address]
| Sp | Stack Pointer |
[PSW | Processor Status Word |
| I |

The Processor Status Word is a 16-bit value made up from the A register and
the 8-bit "Flag" byte, and is treated as a single unit for stack
operations.

The current PC address, when it appears in an operand field not as a
clarification character in expressions, is assigned the current value of
the program counter maintained by ASM during the assembly.

Section 7: Assembly Language Utilities

7.4 Assembler Directives

Assembler directives are valid entries in the instruction field of 8080
assembly language source code. However, a directive 1is not an 8080 or zZ8¢
instruction code. An assembler directive is a command to the ASM program
to aid in the assembly.

Some directives are used to name, define, or reserve memory locations;
others permit 1logical variables to be defined, thus allowing conditional
assembly of parts of code; or to instruct ASM where in memory the source
code should be located.

The directives to be discussed here are summarized in table 7-8.

Table 7-8. Assembler Directives

+ + -——+
| | |
| Directive | Meaning I
| | |
| |
| DB Define byte(s) of data. I
| DS Define data storage. |
| DW Define word(s) of data. |
I I
| SET Set logical values. |
| IF Begin conditional assembly. |
| ENDIF End conditional assembly. |
| |
| EQU Numeric "equate." |
| |
| ORG Specify program / data origin.]|
| |
| END End of Assembly. |
I |

DB : Define Byte(s) of Memory

This directive is used to define one or more 8-bit bytes of data.
Each byte, of course, occupies one byte of memory, so this directive
can be used to define memory in either ASCII character strings or in
numeric byte values. "DB" is also the only directive that allows
the definition of more than two character strings.

7-10

Section 7: Assembly Language Utilities

DS

The general form of the directive is:

DB val

The "val" parameter may contain any numeric value which will fit in
eight bits. This represents @ through 255 decimal, or @ through
@@FH.

If ASCII character codes are to be entered into memory, "val" may
contain one or more ASCII characters enclosed in single quotes.
Some examples of the "DB" command are included in table 7-9.

Table 7-9. Sample Use of the DB Directives

: CR DB 13 ;"Return" is ASCII 13 :
: LF DB 10 ;"Line feed" is ASCII 10 :
{ MESG DB 'This is a line of text' I
! LOG DB LF AND OFFH i

As you can see, numeric and string values can be included within the
same "DB" directive. 1In the case of the "MESG" line above, "MESG"
will become the Address of the first byte of the string, the letter
"t". The "h" is at address "MESG + 1", and so forth. Note that, as
in the last line of the example, an expression may be used as long
as it will evaluate to an eight-bit value.

: Define Data Storage

The "DS" directive is used to reserve a specific number of bytes of
memory. If there 1is a label on the "DS" line, that label is the
address of the first byte of memory reserved.

By using the "DS" directive, a programmer can hold a number of
memory locations available for later data storage. This can also be
done by using the "ORG" directive to simply advance the program
counter to the desired location as you will see later.

The principle difference between the "DS" and the "DB" directives is
that with "DS," the operand field specifies a number of bytes, not a
value. Both the "DB" and the "DW" directives use the operand field
to define value of memory locations.

7-11

Section 7: Assembly Language Utilities

DW

SET

IF

: Define Word

This directive is similar to the "DB" directive discussed above,
except that "DW" expects 16-bit values to be included in the
operand. As with "DB," "DW" allows an expression, a numeric value,
or a one or two-byte string. Table 7-1¢ illustrates some valid
examples of "DW." Note that the least significant byte is stored
first to be consistent with the 8080/Z80.

Table 7-10. Sample DW Directives

: MAX DW OFFFFH ;Maximum 16 bit value :
: INTLS DW 'MK' ; Two ASCII bytes :
= CRLF DW 13 * 256 + 10 :
: DEC DW 65535 ;Biggest decimal value :
; —

:+ Set Label Value

By using this directive, values can be dynamically assigned to label
names during assembly. This, along with the "IF" directive, can
permit certain parts of a program to be assembled based upon the
value of labels.

The "SET" directive is the only type of statement which allows a
label to appear on more than one line. The value assigned to the
line label is valid only until the next "SET" directive assigns
another value.

Examples of the "SET" directive are included below, under the "IF"
directive,

: Begin Conditional Assembly

ENDIF: End Conditional Assembly

7-12

These two directives, which must always appear in matched pairs, are
used to perform a conditional assembly.

The format is:

IF expression
STATEMENT
STATEMENT
ENDIF

Section 7: Assembly Language Utilities

In the form shown above, the statements will be assembled only if
the value of "expression" evaluates to non-zero.

If the expression evaluates to zero, the statements are listed in
the ".PRN" file but are not assembled.

EQU : Equate

This directive permits a numeric value to be assigned to a specific
label for the duration of the assembly. In this way, it is very
similar to the "SET" directive. However, a label used in an "EQU"
directive may only be defined once in a given assembly.

"EQU" is most often used to allow key numeric values to be referred
to by label. Wherever the label of the "EQU" directive is used in a
subsequent operand field, the value specified in the "EQU" operand
is assembled.

ORG : Program/Data Origin

This directive is used to alter the location at which machine code
generation will take place.

The value in the operand field is a constant or expression which
evaluates to a 16-bit address.

Any number of "ORG" directives can be used in a program to control
assembly. No checking is made to assure CP/M or any other part of
memory is not over-written.

CP/M programs must initially "ORG" at address @1@@H.

END : End Assembly

This directive is used to signal the end of an 8080 assembler
program. While it is not required, it is good program practice to
mark the end of the source program with the "END" directive.

7.5 Operation Codes

While assembler directives are used within the instruction field in 8080
source code, it is the operation code mnemonics which actually direct the
processor in performing any specific task. The mnemonics used by the CP/M
assembler are the standard Intel 8080 instructions, and are completely
documented in a variety of well-written commercially-available texts.

7-13

Section 7: Assembly Language Utilities

A full description of each operation code is beyond the scope of this
section. Nonetheless, a brief summary of the instructions is provided for
your benefit.

The conventions and standards used are summarized in table 7-11.

Table 7-11. Conventions

I I I
| Symbol | Description |
I | I
| I
| data An 8-bit value or expression. |
| addr A 16-bit value, expression, or label.|
| r Any 8-bit register or "M." |
| rp Any 16-bit register or stack pointer.]|
| or program counter "S" or "P." |
| n Contents of specified register or |
| memory location. |
| M Data at address (HL). |
I I

The instructions are grouped into arbitrary groups as follows:

Program Control - Jumps, Calls, and Returns

Immediate Operand Instructions - Data Specified
Increment and Decrement Instructions

Data Movement Instructions - Moves, Loads, and Exchanges
Arithmetic and Logical Instructions

Processor Control Instructions

Each group will be presented, showing the instructions and a brief
description of the function of each.

Program Control

This group includes the jump, call, and return instructions which allow a
variety of conditional program execution. The different forms of the
instructions test the condition flags in the Flags register, and act
accordingly. Except as noted, these instructions all reference a 16-bit
address or line label in the operand.

7-14

Section 7: Assembly Language Utilities

r The group includes:

JMP addr Unconditional Jump.

JNZ addr Jump on non-zero condition.

Jz addr Jump on 2zero condition.

JNC addr Jump on no carry condition.

JC addr Jump on carry condition.

JPO addr Jump on odd parity condition.

JPE addr Jump on even parity condition.

Jp addr Jump on positive condition.

JM addr Jump on negative condition.

CALL addr Unconditional call subroutine.

CNZ addr Call on non-zero condition.

CZ addr Call on zero condition.

CNC addr Call on no carry condition.

CC addr Call on carry condition.

CPO addr Call on odd parity condition.

CPE addr Call on even parity condition.

CP addr Call on positive condition.

CM addr Call on negative condition.

RET Unconditional return from subroutine.

RNZ Return on non-zero condition.

RZ Return on zero condition.

RNC Return on no carry condition.
" RC Return on carry condition,

RPO Return on odd parity condition.

RPE Return on even parity condition.

RP Return on positive condition.

RM Return on negative condition.

RST n Programmed "Restart.”

The "Restart" instruction is a special single-byte call instruction.

The

"n" parameter is an integer value or expression which evaluates to a value
between § and 7. It translates into a CALL to the address equivalent to 8

* n. By placing a JUMP command at that address, RST permits

addressing sometimes found in other processors.

indirect

7-15

Section 7: Assembly Language Utilities

Immediate Operand Instructions

The instructions in this group typically specify a one or two-byte value as
part of the instruction: hence, the name immediate operand. The
instructions either 1load a memory address or a register, or perform
arithmetic or logical operations.

MVI r,data Move data byte into specified register.

ADI data Add operand to (A) without carry.

ACI data Add operand to (A) with carry.

SUI data Subtract operand from (A) without carry.
SBI data Subtract operand from (A) with borrow.
ANI data Logical AND operand with (A).

XRI data Logical exclusive OR operand with (A).
ORI data Logical OR operand.

CPI data Compare operand with (A) and set flags

as if an SUI had been done.
LXI rp,data Move data bytes into register pair.

Notice that the borrow mentioned above is actually the state of the carry
flag during subtraction operations. The CPI instruction affects the flag
as 1f a "SUI" were the instruction, except that the contents of A are not
changed: only the condition flags are set.

Increment and Decrement Instructions

This group of instructions permits a single register or a specific register
pair to be incremented or decremented by one. This can be used in looping,
or in arithmetic operations where the operand is "1".

INR r Increment specified register.
INX rp Increment specified register pair.
DCR r Decrement specified register.
DCX rp Decrement specified register pair.

7-16

Section 7: Assembly Language Utilities

Data Movement Instructions

The instructions in this group are used to move data from memory to the CPU
registers and back again. Between-register moves are also included here.

MOV rl,r2 Move contents of r2 into rl.

LDAX rp Load A from memory addressed by register pair.
STAX rp Store A into memory addressed by register pair.
LHLD addr Load HL register pair from address.

SHLD addr Store HL register pair to address.

LDA addr Load A register from address.

STA addr Store A register into address.

POP rp Load register pair from stack.

PUSH rp Store register pair onto stack.

IN data Load A register from CPU I/0 port "data."

OUT data Store A register to CPU I/0 port "data."

XTHL data Exchange data from top of stack with HL.

PCHL Load program counter from HL.

SPHL Load stack pointer from HL.

XCHG Exchange DE and HL.

The "LDAX" and "STAX" instructions require the operand to be either the BC
or the DE register pair ("B" or "D").

Both the "PUSH" and "POP" instructions affect the contents of the stack
pointer after the data is stored or 1loaded. The operand must be "B", "DV,
or "H" to specify a register pair, or it must be "PSW" to specify the A
register and the Flags word.

The special case of "MOV M,M" is not allowed, although other registers may
be doubly specified.

7-17

Section 7: Assembly Language Utilities

Arithmetic and Logical Operations

These instructions act to perform single precision arithmetic or logical
operations upon the A register. The Flag word will be affected by the
result.

ADD r Add register to A without carry.
ADC r Add register to A with carry.
SUB r Subtract register without borrow.
SBB r Subtract register with borrow.
ANA r Logical AND register with A.
XRA r Exclusive OR register with A.
ORA r Logical OR register with A.
CMP r Compare register with A.
DAA Decimal adjust A register.
CMA Complement A register.
STC Set carry flag.
CMC Complement carry flag.
RLC Rotate register A left. Carry
is copy of LSB.
RRC Rotate register A left. Carry is copy of LSB.
RAL Rotate carry flag and register left.
RAR Rotate carry flag and register right.
DAD rp Double precision add rp with HL.

In the "DAD" instruction, the contents of the specified register pair is
added to the HL register pair, with the result stored 1in the HL register.
The register pair (rp) must be B, D, H, or SP.

Control Instructions

The remaining instructions specify direct control of the processor and its
interrupt system.

HLT Halt operation of the CPU.

DI Disable interrupts of the CPU.
EI Enable interrupts of the CPU.
NOP No operation, a place holder for

memory locations.

7-18

Section 7: Assembly Language Utilities

7.6 Assembler Execution
When the ASM program executes, it will display several message lines.

Assuming that there are no assembly errors,the message will look something
like the illustration in table 7-12 below.

Table 7-12. Sample ASM Messages

+
I

| CP/M ASSEMBLER - VER 2.0
| @21F

| @12H USE FACTOR

| END OF ASSEMBLY

!

+——————+

The value on the second line, @21F in the example above, is the address of
the next free location in memory following the assembled program. It is a
hexadecimal number.)

The #12H is a hexadecimal value which indicates the relative usage of the
ASM Symbol Table. As the assembler executes, it has only a limited amount
of space in which to store labels and their appropriate addresses for a
program. This 1is called a Symbol Table Area. This value indicates how
much of the maximum symbol table area was actually used during the
assembly.

The value reported will be in the range of @0@H through @FFH. In the
example above, @22H is equivalent to 34 decimal. The percentage of the
symbol table used during this assembly is

34
——— = 13.3%
255

Any value reported can be calculated similarly.

Note that the "END OF ASSEMBLY" message does not necessarily indicate a
successful assembly. Error messages, discussed in the next few pages, will
be summarized at the console between the first and second lines 1in the
example above. To be certain that the assembly has no errors, you should
check the ".PRN" file generated by ASM.

When you look at the ".PRN" file, either with the TYPE command or with a
text editor, you will see some additional hexadecimal values to the left of
each source code line. These values are the memory addresses and absolute
hex code which represent the program you have written.

7-19

Section 7: Assembly Language Utilities

The first position on a line should either be blank or contain one of the
error codes described later in this section.

Next you will see either an address or a value, depending upon the contents
of the instruction field. If the instruction is the "EQU" or "SET"
directive, the number will indicate the value of the label. You will also
see an equal sign "=" following the value. Other instructions generally
result in an address being printed in the field. In the case of
instructions that generate more than one byte of code, the address is the
location of the first byte of the instruction or data.

The next several columns before the source code line represent the actual
hex code generated by ASM. It shows the contents of the address(es)
indicated in the address column.

Note that, even in the ".PRN" file, source comments are maintained. Should
your source file be destroyed, you can recover by using ED on the ".PRN"
file and deleting the first several columns.

7.7 Error Messages

There are two classes of errors which may be generated during execution of
ASM. The first, which are generally caused by disc or file errors, are
fatal and will terminate execution. For example, if ASM cannot locate the
specified source file to assemble, it cannot continue.

The second class of errors are due to syntax and source code statement
mistakes. The assembler will attempt to complete if such errors are
encountered, and will report the error line at the console and flag the
line in the ".PRN" file. These types of errors are discussed below.

7-20

Section 7: Assembly Language Utilities

(’\\ Fatal Errors
Message

NO SOURCE FILE PRESENT

NO DIRECTORY SPACE

SOURCE FILE NAME ERROR

SOURCE FILE READ ERROR

OUTPUT FILE WRITE ERROR

CANNOT CLOSE FILE

DISC ERROR ON DRIVE "x"

Action

ASM cannot locate the source file you
specified. Check the disc code or
spelling and try again.

The disc directory is full: no more files
may be created. You must erase some
files to make room for the ".PRN" and
Y.HEX" files.

No wild card specifiers may be used in
the ASM command.

ASM cannot read the source file
specified. Possibly the disc has a bad
spot, or the file contains "garbage"
data. Check to see whether the file
contains what you think it contains using
the TYPE command.

This means ASM cannot write to disc,
either because it is write-protected or
because it is full. Use the STAT
command to determine which is the case.

ASM could locate the file but could not
write anything to the disc. Check to see
if the disc is write-protected.

You have specified an invalid drive code
in the ASM command. Remember that ASM
requires file extension ".ASM" and that
any file extension specified indicates
the disc code for ASM files.

7-21

Section 7: Assembly Language Utilities

Source Code Error Messages

If the ASM program ever finds a line it cannot assemble, it will report an
error condition. This will be displayed both at the screen and in the
".PRN" file. The first position on a 1line which contains an error will be
one of the letters shown below. The entire source line, along with its hex
code equivalent, is also displayed.

The error codes which may appear are:

D Data Error. The data specified does not fit into the number
of bytes provided. Data may be truncated.

E Expression Error. ASM cannot evaluate the expression
properly.
L Label Error. A label has been used incorrectly. This can

happen when a 1label is duplicated in more than one source
line, or when a label cannot be used as an operand.

N Invalid Feature. You have used a feature of some other
assembler which cannot be used in ASM.

0 Overflow Error. The expression is too complex for ASM to
evaluate. Simplify it by using more than one statement.

P Phase Error. A label changes value during an assembly,
which is allowed only wth the "SET" directive.

R Register Error. The register specified is not wvalid with
the instruction used. Check to make sure the instruction
permits the register specified.

U Undefined Symbol. A label is used in an expression but has
never been assigned a value.

A Value Error. The operand is not correctly formed. Check
for typing errors.

7-22

Section 7: Assembly Language Utilities

7.8 The LOAD Command

Once a program has been assembled using ASM, it is necessary to load the
".HEX" file into memory and convert the file to a ".COM" file. The LOAD
command turns this file into a command file that is executable as a
transient program by entering:

LOAD filename

The file name must correspond to a previously assembled ".HEX" extension
file. An optional drive identifier plus colon may precede the file name
parameter. No errors should occur when a properly assembled program is
loaded. If an error occurs, check the ".PRN" file to determine what error
has been made. The most common error, "INVERTED LOAD ADDRESS," occurs when
there no "ORG 010¢" directive as the first line of assembly language code.

7.9 The DUMP Command

The DUMP command is used to display the contents of a file on the display
screen in hexadecimal form. The format of this command is:

DUMP file

The file can be of any type, including ".HEX" and ".COM" extension files.

7.10 Introduction to DDT

DDT is the name of the CP/M "Dynamic Debugging Tool," a program designed to
help test assembly language programs. By using DDT, you can single step
through an assembled and loaded file just as you might trace a program in
BASIC. At each breakpoint, you can examine the 8@80 registers; modify
those registers or memory locations; and even assemble new source code
in-line.

7-23

Section 7: Assembly Language Utilities

7.11 Starting DDT

As with many other CP/M transient utilities, DDT can be initiated in more
than one way. The general form,

DDT

loads the DDT program from the disc. The program is now ready to accept
user input. Any of the commands described in the next section are allowed.

Generally, DDT is loaded in order to work on a specific program file. This
file can be either a fully assembled and loaded ".COM" file, or a “.HEX"
file which has not yet been loaded.

While there are DDT commands to load a program to be tested, the name of
the program to be debugged may be specified when DDT is first run. The
format of this command is

DDT filename.extension

Note that the full file name and file extension must be specified. Only
files of extension ".HEX" or ".COM" are meaningful.

7.12 Using DDT

Once the debugger is memory-resident, the program will display the revision
number of the DDT program, which should be 2.0 at first release of the
HP 82900A CP/M System. If a file name was specified when DDT was executed,
two additional fields will be displayed. The first item, a column labeled
"NEXT", indicates a four digit hex value. This represents the next free
location in the TPA. The second item is a column labeled "PC", and contains
the four digit hex value of the DDT program counter. This typically is
initially @10¢H.

Once DDT has been loaded and has reported the items described above, the
DDT prompt "-" will appear in column 1. DDT is ready to accept input.

7.13 DDT Commands

The commands available are illustrated and briefly described in table 7-13.
They are described in detail following that table.

7-24

Section 7: Assembly Language Utilities

Table 7-13. DDT Command Summary

e - +
| [
| A Assemble a program statement at |
| the given address. |
| I
| D Display contents of memory in hexa- |
[decimal and ASCII. |
[I
| F Fill memory with specified constant. |
| |
| G Begin execution ("GO") of program |
| in memory with optional breakpoints. |
| |
| I Insert a file name into the FCB buffer.|
| I
| L Disassemble ("List") memory. |
I |
|l M Move a block of memory from one |
| location to another. |
I I
| R Read a file into memory for testing. |
| |
| 8 Display and edit ("Substitute") the]
| contents of a memory location. |
I I
| T Trace the execution of a program. |
| |
| U Execute a specified number of |
| program instructions (Untrace").]
| |
| X Examine the CPU registers. |
| |

7-25

Section 7: Assembly Language Utilities

A: Assemble

DDT allows immediate assembly of 8880 instructions by use of this command.
The format is:

7-26

AXXXX

The user is prompted for a line of assembly language source code:
line numbers and 1labels are ignored. The instruction mnemonic and
the operand are assembled into memory starting at the specified
address. The operand may contain any of the register names or hex
constants. Labels may not, of course, be used as operands.

The next byte address for assembly will be displayed at the console.
Once the DDT assembler has been invoked, it remains active until a
blank line or period (".") is entered on the keyboard. Note that the
assembler, 1like the disassembler to be discussed later, is a part of
DDT which can be overlaid by user code. This procedure, described
later in this section, causes a question mark to be printed in
response to the "A" command input.

Display Memory

This command allows the contents of memory to be displayed in hex and
ASCII. The first four bytes show the hexadecimal address of the
first byte displayed on that line. The next sixteen bytes are the
contents of memory locations starting at the indicated address.
Finally, the ASCII representation of those sixteen bytes of memory.
Non-displayable characters are represented by a decimal point ".".

There are three general forms of the command:

D
Dxxxx

DXXXX ,YYYY

In the first and most simple case, 192 bytes of memory are displayed
starting at the current address contained in the DDT program counter.

The second case specifies that DDT should display the 192 bytes of
memory starting at hexadecimal address "xxxx".

The final form causes memory locations between address "xxxx" and
"yyyy" inclusive to be displayed on the CRT.

Displaying memory with this command increments the DDT program
counter, =so that on subsequent display commands no address need be
specified to display contiguous segments of memory.

Section 7: Assembly Language Utilities

Fill Memory

This command allows the user to initialize a block of memory with a
constant value. The format of the command is:

PXXXX,YYYY,22

DDT will f£ill all memory locations from "xxxx" through "yyyy"
inclusive with the eight bit value specified by the hex value "zz".

Begin Execution

This command, the "Go" command, causes DDT to begin execution. There
are four forms of this command:

G
GXXXX

GXXXX,YYYY
GXXXX,YYYY 2222

Note that the first parameter "xxxx" may be omitted, so the form
would be:

G,yyyy
G,YYYY 2222

This causes the current value of the DDT program counter to be used
in place of the "xxxx" parameter.

The first form causes execution to begin at the current program
counter address and to continue until a "RST 7", or reset-seven, is
executed by the program under test. A jump or call to address @g@g@gH
(warm boot) will cause CP/M to restart, terminating DDT.

The second form is similar to the first, except that the DDT program
counter is initially set to "xxxx".

The third form introduces a breakpoint at address "yyyy".
Instructions beginning at address "xxxx" are executed, and will halt
immediately prior to executing the instruction at "yyyy". Once the
breakpoint 1is encountered, it 1is cleared, and must be reset if
desired.

The final form allows a second breakpoint to be specified. This
allows conditionally executed statements to break at either of two
points. As with the previous form, encountering either breakpoint
clears both.

7-27

Section 7: Assembly Language Utilities

7-28

By using the form in which no "xxxx" is specified, you can skip one
or more statements. For example, while single stepping through a
CP/M program, you will probably want to hop over all the statements
executed in a system function call. By adding three to the current
program counter, you can calculate the "yyyy" in the command

"G,yyyy".

The call to BDOS proceeds through its completion; then DDT resumes
control. This makes disc functions much quicker, and makes console
I/0 much neater.

Once execution is started, it continues wuntil: a breakpoint is
encountered; a "RST 7" instruction is executed; or until a warm boot
is performed. DDT cannot intervene otherwise.

When DDT does encounter a breakpoint, it displays an asterisk and a
four-digit hex wvalue. This represents the value of the DDT program
counter, the address of the memory location about to be executed.

If either breakpoint 1is equivalent to the program counter, no
instruction is executed and DDT intervenes immediately.

Insert FCB

This command permits the user to specify a file name to be inserted
into the default FCB at address @@5CH. This permits the file to be
Read using the "R" command which is described later. The format is:

Ifilename.COM
Imyfile . HEX

The file name must be specified, however, the drive code is assumed
to be the current default drive. To specify another drive, the drive
code must be placed into address @@5CH. The "S" command allows this
substitution.

If the file is to be loaded using the "R" command, the extension must
be ".HEX" or ".COM". However, this command can also be used to
initialize the FCB for file use by the program under test. In this
case, the file extension is arbitrary and optional.

Section 7: Assembly Language Utilities

Disassemble Memory

This command causes the contents of memory to be disassembled back
into 8086# mnemonic operation codes. This command is similar to the
"D" command and includes the following three forms:

L
LXXXX

LxxXxx,yYyyy

The first form causes eleven lines of disassembled operation codes to
be listed, starting at the current DDT program counter.

The second form is similar to the first, except that the DDT program
counter is set to an initial value of "xxxx".

The final form starts the disassembly at "xxxx" and stops after
disassembling the instruction at "yyyy".

If a location contains a value that cannot represent a valid 8080
operation code, DDT displays the address, question marks, and the
contents of that address. This could mean that location is used for
data storage by the program or that the value represents one of the
valid Z80 opcodes unknown to the 8080 disassembler.

As with the "A" instruction, that portion of DDT that contains the
disassembler may be overlaid so that larger programs may be tested.

Move Memory
This command permits a "block move" of memory. The format is:
MxXXXX,YYYY,222Z

The contents of memory in the range from "xxxx" through "yyyy"
inclusive are moved into the area of memory starting at "zzzz".

Note that, if a program is moved, it is not relocated. There 1is no

effort to modify any addresses to correspond to the new starting
address. This is a simple block move.

7-29

Section 7: Assembly Language Utilities

7-30

Read File

This command is used to load the contents of a file into memory. It
is used 1in conjunction with the "I" command, since the name of the
file to be loaded is taken from the default FCB buffer at address
#@5CH. The "R" command can be specified in either of two forms:

R
Rxxxx

The first form selects a default local address which depends on the
type of file being loaded.

If the file extension is ".HEX", the load address is assumed to be
Pl100H and the file 1is 1loaded into the consecutive locations of
memory.

When the second form of the command is used, the value "xxxx" is
added to the default address as an offset.

When either form of this command is used, DDT displays either a
question mark or a load message. The question mark indicates an
error during the read operation: the file could not be opened, or a
checksum error occurred in loading a ".HEX" file.

If the load message is displayed, it will be of the same format
printed by DDT when it first executes. There will be a "NEXT" free
address, and a current "PC" field containing the DDT program counter
address.

Substitute Memory

This command is used to examine and optionally change one or more
addresses in memory. The form is:

SxxXxx

The "xxxx" specifies the address which is to be examined. The
address and the current hex contents are displayed. The user may
press [END LINE] to leave that location unchanged and proceed to
examine the next location.

If the user enters a valid two-digit hex value, that wvalue is
substituted for the initial value and the next address is examined.
To end the substitute command, enter a decimal point ".". Entering
an invalid value also terminates the "S" command.

Section 7: Assembly Language Utilities

Trace Execution

This command allows single step tracing of program execution for one
to 65535 successive program steps. The format of the command is:

T
TXXXX

The first form is equivalent to the command "T1" and causes a single
instruction to be executed. DDT displays the processor state as
described for the "X" command described later.

The second form is similar, except that "xxxx" is assumed to be a hex
value indicating the number of steps to be traced. A breakpoint can
be forced during tracing by striking the [CONT] key.

DDT will intervene between each instruction in the user program, so
program execution can be up to 500 times slower during tracing.

After each trace, DDT sets the default program counter address to the
contents of the register pair for the "D" command. It also sets the
default value of the "L" command to the next byte of memory following
the "D" display.

Since DDT receives control at each step by using the "RST 7"
location, programs under test may not use this restart location.
Untrace

This command is similar to the "T" command, except that the processor
status is not displayed before each instruction. The form is:

U
UxXxxxx

The first form defaults to "Ul". The number of steps specified by
the hex wvalue "xxxx" will be executed. Processor status is not
automatically displayed.

All conditions relevant to the trace command apply to untrace as
well.

7-31

Section 7: Assembly Language Utilities

X:

7-32

Examine Program State

This command allows one or all registers to be examined and altered.
The forms of this command are:

X
Xr

The "r" may be one of the Z80p CPU registers as follows:

Carry Flag

Zero Flag

Memory Flag

Even Parity Flag
Intermediate Carry Flag
A Register

BC Register Pair
DE Register Pair
HL Register Pair
Stack Pointer
Program Counter

TN rARIINO

The first form displays all of the above fields as follows:
CXZXMXEXIxA=yy B=22zzz D=2zzzz H=22zzz S=222z P=2222z instr

The "x", a zero or one, represents the value of the flag name which
precedes it. The "yy" represents an eight-bit, two-digit hex value,
the contents of the A register. The "zzzz", represents a sixteen-
bit, four-digit hex value, the contents of the specified register
pair or counter. The "instr"™ field contains the disassembled
operation code of the instruction about to be executed at the current
value of "P", the program counter. The second form allows the
display and alteration of a flag, register, or register pair.

By typing one of the letters given above, the user selects which
field 1is to be examined and edited. By pressing the [END LINE] key,
nothing is changed. 1If an appropriate value is typed, that value is
entered into the specified flag or register.

Note that, in entering any of the register pairs, both register
values must be specified.

If the assembler/disassembler portion of DDT have been overlaid, the
"instr" field contains the hex operation codes in place of the 8080
mnemonic.

M

/*\

Section 7: Assembly Language Utilities

7.14 Implementation Notes

When DDT first loads, it relocates itself into the portion of memory
normally used by the CCP. Then, DDT changes the address stored at address
@0g6H so that all BDOS calls are directed through DDT. This allows
programs which look at the address of the bottom of BDOS to see the base of
DDT instead. DDT is now ready to accept input.

DDT is organized into two segments. The main nucleus, which can reside
totally within the area used by the CCP, 1is always in memory and cannot be
deleted. The second portion contains the DDT assembler and disassembler,
and may be overlaid by user programs loaded into memory. Address 6 and 7
will contain the address of the base of the DDT program, which is the start
of the DDT assembler/disassembler. That address will contain a jump to the
start of the main nucleus.

As a user program grows toward the start of DDT, the assembler disassembler
portion will be overwritten as it becomes necessary. Once DDT requires the
memory between the start of this optional portion and the main nucleus, DDT
will dynamically alter the address stored at address 6 and 7 and DDT will
no longer be able to execute the "A" and "L" commands. Further, the "X"
and "T" command will not display the 8080 mnemonics as it normally would.
Instead, the machine operation code will be displayed.

If any portion of the assembler is overlaid, the "aA", "L", "T" and "X"
commands do not function as described above. Both "A" and "L", when
entered at the console, cause a question mark "?" to be displayed
indicating an improper DDT command. Where the "T" and "X" commands would
normally display an assembly language mnemonic, the hex operation code is
displayed instead.

7.15 The SAVE Command

When you have added or modified assembly language code with the DDT
assembler, you will want to save the contents of memory on vyour disc as a
".COM" file. By using the SAVE command available as a standard part of
CP/M, you can easily store a picture of memory into such a file for later
execution.

The general form of the built-in SAVE command is:

SAVE n file
The "n" parameter is a decimal number referring to the number of pages of
memory, starting at address 100H, to be saved on disc. One page of memory
consists of 256 bytes of data. The "file" parameter must be a valid file

reference consisting of a drive identifier (optional), file name, and
extension.

7-33

Section 7: Assembly Language Utilities

Before you can save your program, however, you must calculate the size of
the memory image. The size must be figured as the number of 256-byte
(decimal) pages. Rather than work in decimal, which is clumsy here, let's
see how to accomplish the task in hexadecimal.

First, determine the first free address above your program. You can
discard the low two digits, and work with only the most significant two hex
digits.

If the low two digits in the original address were "@@", subtract one from
the number of pages you have just calculated. Otherwise, the number you
have computed represents the exact number of 256-byte (or 1@@H-byte) pages
which must be saved.

Let's look at an example of this technique. Assume a program is in memory,
loaded by DDT. The program uses memory from address @10¢H through 2317H.
The unused address above my program is 2318H: the most significant two
digits are 23H.

The value 23H converts to 35 decimal. Since the low-order two digits are
non-zero, the number of pages to save is 35. By exiting DDT with the
command

G@ or °C

CP/M performs a warm start, and control is returned to the CCP. However,
my program is still in memory starting at @1@@gH! By typing the following
command, my program will be stored on the disc ready to execute:

SAVE 35 MINE.COM

In fact, the last program executed can be re-entered by saving a program on
disc using this command:

SAVE @ !.COM

This causes a file named "!.COM" to be created with zero bytes.

When you type the file name as command input, CCP locates the file and
loads it into memory. Of course, no data is loaded and CCP immediately
calls address @109H. The net effect is that the last program that executed
is once again executed.

Of course, there are some qualifiers on these generalizations. First, the
program must not use any memory above the beginning of the CCP. This can
be determined using the HP sub-function number 12@: Return Region Bounds.
If your program is larger than the start of CCP, each warm start will cause
that part of memory to be overwritten by the CCP, destroying the program
which was 1left there. However, if you are careful to avoid this limit
condition, you can use this quirk of CP/M!

7-34

/‘\

Disc File Organization

Standard File Extensions

Appendix A

+ e e e o +
| | |
: Extension | File Type |

I I
+ —t——— +
I I |
| ASM | ASM source code. |
| BAK | Back-up ED file. |
| BAS | BASIC source file. |
| COM | Transient command file, |
| DAT | ASCII data file. |
] DOC | Document file, |
| HEX | ASM object code. |
| LIB | Library file. |
| MAC | Relocatable assembler source code. |
| PRN | Printer list file. |
| REL | Relocatable object code. |
| SuB | SUBMIT command file. |
| SYM | Assembler symbol table. |
| XRF | Assembler absolute cross-reference table. |
| TXT | Text file. |
| $$$ | Temporary file. |
| | I

Disc Organiza

tion

| I | I
| Disc Format | 5-1/4-Inch | 8-Inch |
| (Decimal values) | Disc | Disc I
I		
	I	
Bytes per physical sector	256	256
I l	I	
Physical sectors per track	16	30
I		I
Bytes per CP/M sector	128	128
		I
CP/M sectors per track	32	60
I I		
Tracks per side	33 [75	
	I I	
Tracks per disc	66	150
I | I |

Each Winchester hard disc is equivalent

Maximum File Size

5-1/4-inch disc:
16K bytes/extent x 32 extents/file

8-inch disc:
32K bytes/entry x 64 entries/file

to four 8-inch flexible discs.

512K bytes/file.

2048K bytes/file.

Sector Map

| | I

| 5-1/4" Disc | 8" Disc | Description CAT File Name
|Track Sector|Track Sector| and File Type
| I |

I | | | |

| @ | 6-2 | @ | @-2 |LIF volume information.

| | | I I -—+

| o | 3-4 | @ | 3-4 |Reserved. \

| 2 | 5-15 | @ | 5-29 |CP/M operating system. \

| 1-2 | 9-15 | 1 | ©-29 |CP/M operating system. \

| 3 | 8-15 | 2 | ©8-15 |CP/M directory. CP/MSYS DATA
| 4-63 | @-15 | 2 | 16-29 |CP/M user file space. /

| === | === | 3-147 | @-29 |CP/M user file space. /

| =— | === | 148 | 8-27 |CP/M user file space. /

| | | | I -+

| | | I I ==+

|64-65 | @-15 | 148 | 28-29 |BASIC and binary programs.\

| | | | | Autost Prog,
| - | == | 149 | ©-29 |BASIC and binary programs./ CP/M BPGM

| | I | | -—+

A-3/Aa-4

" [H],
[BACK SPACE]

" (1]

" {31, " M1,
[END LINE]

"~ [P]

~[8]
" [u]
~[X]

I

I

I

I

I

I

I

I

I

I

|

I

I

!

I

I

I

I

I

I

| “[R]
I

I

I

I

I

!

I

|

I

| [CONT]
I

|~ 1]

| [BACK SPACE]s
| [TR/NORM]

I

| [PAUSE]

I
I
I

[STEP]

* [CTRL]
s [SHIFT]

Appendix B

CP/M Keyboard Functions

__ +
|

Action |

I

—— e — ———— —————" ————— — —_ ——— — T — ———— —— — ———— T ——— . — —— ———— +
I

Reloads and returns control to CP/M when at beginning |
of line. |
|

Performs carriage return/line feed without terminating |
input 1line. |
|

I

I

Causes destructive back space. |
I

I

Writes tab character (HT) and tabs cursor. |
l

Performs carriage return and executes input line. |
I

I

Routes console output to console and current list]
device. Pressed again, routes output to console only. |
I

Recalls current input line. |
I

Suspends console output. Console output resumes when |
any key is pressed. |
!

Deletes current input line and outputs carriage |
return/line feed. |
I

Causes destructive back spaces to beginning of input |
line. |
I

Deletes and echoes preceding character. |
I

Writes ESC character. !
|

I

| |

Pauses print buffer output. Pressed again, restarts |
print buffer output. |
I

Erases print buffer. |
__ +

B-1/B-2

o ————— Fm— e ———
I I

| Char- | Decimal
| acter | Code
[I

| |
tm————— e
| |

| NULL] 4]

| SOH] 1l

| STX | 2

| ETX | 3

| ET | 4

| ENQ | 5

| ACK | 6

| BEL | 7

| BS | 8

| HT | 9

| LF | 1@

| VT | 11

| FF | 12

| CR] 13

| sO | 14

| SI | 15

| DLE | 16

] DC1 | 17

| DC2 | 18

| DC3 | 19

] DC4 | 20

| NAK | 21

| SYN | 22

| ETB | 23

| CAN | 24

| EM | 25

| SUB | 26

| ESC | 27

| FS | 28

| GS] 29

| RS] 38

| US | 31

I |

o —— e ———
~ [CTRL]

s [SHIFT]

ASCII Character Codes

Hexa-
decimal
Code

00
g1
g2
@3
04
@5
06
a7

29
gA
@B
gc
@D
gE
1F
10
11
12
13
14
15
16
17
18
19
1A
1B
1cC
1D
1E
1F

* Also, [BACK SPACE]

+ Also, [END LINE

]

R e

 ———— e — e — — e e ——_— e e s . — ——

Keystroke

IS 4+ %~~~ =2 o0

WV IEAS &« QOB WNEFERN

++ Also, [BACK SPACE]s and [TR/NORM]

Code

Appendix C

Hexa-

decimal

Code

20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

e SR

—
[}
B
G- U
X 0T
[V o]
T T o

—

S

g o
- T
0 0
o O
()]

U
M- O
© +
£ 0
O©
—
T
=
T~ U
x 0T
[V e]
oo
—

T

=3)
w— T
0O 0
o O
A

I W
M~ O
© 4+
L 0
(G2

96

97

98

99
100
191
192
183
194
105
196
197
108
109
119
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

OCAOVARMBMONHRDXdEZO0AMAO0XKNEDS> T XHN— m¢c |

————t et

* [CONT].

C-2

V'

'

CP/M Keycodes

Appendix D

When one of the following keys is pressed during a CONIN routine, the

corresponding value will be returned in the B register.

Code

| Key I |
| I Decimal Hexa- |
	decimal	
[BACK SPACE]	8	28
[[END LINE]	13	gD
[TR/NORM]	27	1B
[CONT]	127	7F
[(k1]	128	80
[k2]	129	81 I
[k3]	139	82
(k4] I 131	83	
I (k8]	132	84
(k9]	133	85
[k19] I 134	86	
[k11] I 135 I 87 I		
[[-CHAR]	136	88
I [CLEAR]	137	89
[INIT]	149	8C]
[RUN]	141	8D
[CONT]	143	8F
[ROLL"]	145 I 91	
[TEST]	146	92
[k14] ! 147	93	
[LIST] I 148	94 [
[[P LST]	149	95 [
[KEY LABEL]	150	96
[BACK SPACE]s	155	9B I
[k7]	156	9C [
[-LINE] [157 I 9D I		
[I/R]	158	9E
[<=-]	159	9F
[E]	160 I AQ [
(k5]	161	Al
(k6]	162	A2
("] I 163 I A3		
[v]	164	A4
! [k12]	165	AS
[RESLT]	166	A6
[A/G]	168	A8
[ROLLv]	169	A9 [
[-->]	170	AA
[k13]	172	AC

D-1/D-2

Y

N

Appendix E

Cursor Control Codes

Control
Sequence

————

Instruction Description

Form Feed and ESC *

ESC &a col ¢ row Y

ESC = row col

ESC &dv and ESC)

ESC &d@ and ESC (

ESC T

ESC Y

Clear All Homes cursor and clears

screen.,

Moves cursor to the
specified column and
row relative to the top]
of the screen, where |
col and row are 2-digit|
decimal numbers. |

Cursor to Address

-t
+
3
T

Moves cursor to the
specified row and
column relative to the
top of the screen,
where row and col are
characters whose codes
are equal to 2@H plus
row or column number.

Cursor to Address

Reverse Video Displays black
characters against
white background from
cursor location, where

v may be uppercase A

Displays white
characters against
black background
from cursor location.

Normal Video

Clears the current
display line from
cursor location.

Clear to End of
Line

Clears the screen from
cursor location.

Clear to End of
Screen

4
+
+
-+
R

e ————— e ———————— g

-+ e —— e . — ——— ey S — e ——— — — — — — — — it — — —— — — — — ot S oot e et st ol s oo e, -+

|
|
I
|
I
I
I
I
I
I
|
|
I
|
|
through 0. |
|
I
|
|
I
|
I
|
|
I
I
|
I

E-1/E-2

)

CPU Registers

Appendix

Z (zero), M (minus), E (even
parity), and I (intermediate
carry).

F

I I

| Reserved | Reference

| Operand I

I I

I I

] A | A register (accumlator).
| B | B register or BC pair.

| C | C register.,

| D | D register or DE pair.

| E I E register.

| H [H register or HL pair.

] L | L register.

| M | Data in memory addressed by HL
| | pair.

| $ | Current address.

| SP | Stack pointer.

| PSW | A register and flags C (carry),
I I

| I

I I

| I

F-1/F-2

Appendix G

CPU Instruction Set

Operand Abbreviations:
data A constant or expression that evaluates to an 8-bit value.
addr A constant, expression, or a label that evaluates to a

16~-bit value.
r Contents of an 8-bit register or M.
rp Contents of a 16-bit register pair or stack pointer SP.
I | h |
| Opcode mnemonic | Description |
! and Operand(s) | |
! . !
| i |
| ACI data | Add operand to A with carry. |
: ADC r { Add register to A with carry. :
: ADD r { Add register to A without carry. :
: ADI data : Add operand to A without carry. :
I ANA r : Logical AND register with A, :
: ANI data : Logical AND operand with A. :
: CALL addr : Unconditional call subroutine. :
: CC addr : Call on carry condition. l
l CM addr : Call on negative condition. :
: CMA } Complement A register. :
5 CMC i Complement carry flag. i

T S Fmm - - -
I l

| Opcode mnemonic |

| and Operand (s) |

. R
| |

| CMP r | Compare register with A,

: CNC addr : Call on no carry condition.

: CNZ addr : Call on nonzero condition.

l CP addr : Call on positive condition.

: CPE addr : Call on even parity condition.

: CPI data : Compare operand with A and set flags as if
| | an SUI had been done.

: CPO addr : Call on odd parity condition.

I CZ addr : Call on zero condition.

: DAA l Decimal adjust A register.

I DAD rp } Double precision add rp to HL and store in
: DCR r : Decrement specified register.

I DCX rp : Decrement specified register pair.

: DI l Disable interrupts of the CPU.

: EI : Enable interrupts of the CPU.

: HLT : Halt operation of the CPU.

: IN data : Load A register from CPU data port.

: INR r } Increment specified register.

: INX rp : Increment specified register pair.
R — I

HL.

Opcode Mnemonic
and Operand(s)

Description

JC addr

JM addr
JMP addr
JNC addr
JINZ addr
JP addr
JPE addr
JPO addr
JZ addr

LDA addr
LDAX rp
LHLD addr
LXI rp, data
MVI r, data
MOV rl,r2

NOP

Jump on carry condition.

Jump on negative condition.

Unconditional jump.

Jump
Jump
Jump
Jump
Jump
Jump
Load
Load
Load
Move
Move

Move

No operation;

on

on

on

on

on

on

no carry condition.
nonzero condition.
positive condition.
even parity condition.
odd parity condition.

zero condition.

A register from address.

A from address in BC or DE register pair.
HL register pair from address.
data bytes into register pair.

data byte into specified register.

contents of r2 into rl.

locations.

a place holder for memory

————————— e ————— e — ———— ¢

——— e ———— e ——————————— . —— 4

.
+
e
T
3
+

G-3

Opcode mnemonic
and Operand(s)

Description

e ———— e ———————————

i
I
l
!
i
ORA r | Logical OR register with A.
ORI data : Logical OR operand with A.
OUT data { Copy a Register to CPU data port.
PCHL : Load program counter from HL.
POP rp : Load register pair from stack.
PUSH rp : Store register pair onto stack.
RAL : Rotate carry flag and A register left.
RAR : Rotate carry flag and A register right.
RC : Return on carry condition.
RET I Unconditional return from subroutine.
RLC : Rotate register A left. Carry is copy of most
| significant bit.
RM : Return on negative condition.
RNC : Return on no carry condition.
RNZ : Return on nonzero condition.
RP : Return on positive condition.
RPE : Return on even parity condition.
RPO ! Return on odd parity condition.

Opcode mnemonic
and Operand(s)

Description

RRC

RST n

RZ

SBB r
SBI data
SHLD addr
SPHL
STA addr
STAX rp
STC

SUB r
SUI data
XCHG
XRA r
XRI data

XTHL data

o ———— e —————————————————————— e ——

I
I
I
I
|
I
I
I
I
I
I
I
I
|
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
!

I

—t———— - - —_ —_—

Rotate bits right. Carry is copy of least
significant bit.

Programmed restart, where @ < n < 7.
Return on zero condition.

Subtract register with borrow.
Subtract operand from (A) with borrow.
Copy HL register pair to address.

Load stack pointer from HL.

Copy A register to memory at address.
Copy A to memory adressed by register pair.
Set carry flag.

Subtract register without borrow.
Subtract operand from A without carry.
Exchange DE and HL register pairs.
Exclusive OR register with A,
Exclusive OR operand with A,

Exchange data from top of stack with HL.

G-5/G-6

CP/M Error Messages

Appendix H

No operating system in drive A:

CP/M module,

door open.

Bad disc, drive

I |
Message Originator | Probable Cause |
I I
| I
CP/M BOOT ERROR CP/M module. | Bad disc, drive |
| door open. |
I I
CP/M SYSTEM CARD SELF-TEST ERROR CP/M BPGM. | Module not |
| installed, |
| module requires |
| service. |
i I
Disk select error on drive x.* BDOS. | Bad disc, drive |
| |
I I
I I
I

Sector read error on drive x.*

WARM BOOT FAILED

Write to R/0O disk error on drive x.

Write to R/0O file error on drive x.

__'I:
I
|
I
+
I
I
I
I
I
I
I
I
I
I
I
|
I
I
I
I
I
I
I
I
I
I
I
|
|
I
*|

I

I

I

I
*|
I

I

I
<t
.

BIOS warm boot
routine.

BDOS.

BIOS warm boot

routine.

BDOS.

BDOS.

door open, wrong|

disc in drive A.|
[

Bad disc, drive |

door open, wrong|

drive

identifier.

door open, wrong
drive
identifier.

Disc set to R/O
disc changed
without warm
boot.

|
|
I
Bad disc, drive |
|
|
|
|

File set to R/0O
with STAT
command.

H I

14
4
T

* X is the appropriate drive identifier.

H-1/H-2

Appendix I

ASM Error Messages
Source Code Errors:

Data error,

Expression error.

Label error.

Not implemented in this version.
Overflow.

Phase error.

Register error.

Value error.

<TVWOWOZrmEmO

Assembly Errors:
CANNOT CLOSE FILE
NO SOURCE FILE PRESENT
NO DIRECTORY SPACE
SOURCE FILE NAME ERROR
SOURCE FILE READ ERROR

OUTPUT FILE WRITE ERROR

I-1/1-2

Appendix J

Annotated Bibliography
CP/M General:

Fernandez, Judi, and Ashley, Ruth, Using CP/M. New York: John Wiley
Sons, 1984.

A self-teaching book which uses a question/answer format to convey
user information. A primer of CP/M commands and syntax.

Hogan, Thom, Osborne CP/M User Guide. Berkeley: Osborne/McGraw-Hill,
1981.

An overview of CP/M, with both the user and progammer in mind.
Includes a review of many software programs which can be used with
CP/M.

Murtha, Stephen, and Waite, Mitchell, CP/M Primer. Indianapolis:
Howard W. Sams and Company, Inc., 1984.

This book presents the beginner with an introduction to CP/M, written
for the first-time CP/M user.

Zaks, Rodnay, The CP/M Handbook with MP/M. Berkeley: Sybex, 1984.

Discusses CP/M and MP/M commands, programs, and facilities.

Assembly Language Programming:

8080/8085 Assembly Language Programming Manual. Santa Clara, Calif.:
Intel Corp., 1980.

The “source" for 808¢ Assembly Language codes.

Leventhal, Lance, 8080A/8085 Assembly Language Programming. Berkeley:
Osborne/McGraw-Hill, 1978.

Leventhal, Lance A., Z80 Assembly Language Programmng. Berkeley:
Osborne/McGraw-Hill, 1979.

Santore, Ron, 8080 Machine Language Programming for Beginners.
Portland: Dilithium Press, 1984.

Zaks, Rodnay, Programming the Z8#4. Berkeley: Sybex, 1979.

J-1/3-2

INDEX

A

A (DDT COMMAND), 7-26

A (ED COMMAND), 6-4

ALTER JUMP VECTOR, 4-58,4-59,4-60
ALV, 5-5,5-6

AL@, 5-7

ALl, 5-7

Append, 6-4

Arithmetic Instructions, 7-18
Arithmetic Operators, 7-8,7-9
ASCII Character Codes, C-1,C-2
ASM Command, 1-6,7-1

ASM File Extension, 3-2,7-2
Assemble, 7-26

Assembler, 7-1

Assembler Directives, 7-10

B

B (ED Command), 6-5

BAK File Extension, 3-2,6-1
BAS File Extension, 3-2
Base Page, 2-2,2-4,2-5
Basic Disc Operating System, 2-3
Basic I/O System, 2-3
Batch Job, 1-22

BAT:, 1-10

BDOS, 2-2,2-3,4-2

Begin Execution, 7-27
Bibliography, J-1

B10S, 2-2,2-3,5-1

BIOS Entry Points, 5-1
BLM, 5-6,5-7

Block Mask, 5-6,5-7

Block Move, 6-15

Block shift, 5-6,5-7

BLS, 5-7,5-8

BOOT, 5-2

Bootstrap Loading, 1-3
BSH, 5-6,5-7

Buffer Position, 6-5
Built-in Commands, 1-4,1-5

C

C (ED COMMAND), 6-5

ccp, 2-2,2-3,2-5,2-6

Chain, 4-56,4-57

CHAIN TO SPECIFIED PROGRAM,
4-56,4-57

Character Codes, C-1,C-2

Character Pointer, 6-2

Character Position, 6-5

Check Sum Vector, 5-5,5-7,5-8

CKs, 5-7,5-8

CLOSE FILE, 4-22

Cold Start, 1-3

COM File Extension, 3-2

Command Buffer, 4-56

Comment Field, 7-4

COMPUTE FILE SIZE, 4-43

CONIN, 5-2,D-1

CONOUT, 5-3

Console Command Program, 2-3

CONSOLE INPUT, 4-5

CONSOLE OUTPUT, 4-6

CONSOLE STATUS, 4-16

CONST, 5-2

Control Instructions, 7-18

CON:, 1-10

CpP, 6-2

CP/M VERSION NUMBER, 4-17

CPU Instruction Set, G-1,7-13

CPU Registers, F-1

CREATE FILE, 4-28,4-29

CRT:, 1-1¢

Csv, 5-5,5-6

CURRENT DISC ID, 4-32

Current Record Number, 3-5,3-7

Cursor Control Codes, E-1

D
D (DDT Command), 7-26

D (ED Command), 6-5
DAT File Extension, 3-2

IN-1

Data Movement Instruction, 7-17 E

Default DMA Buffer, 2-5 E (ED Command), 6-6
Default FCB, 2-5,3-8 ED Command, 1-6,6-1
Default File Buffer, 3-4,3-8 Editor, 6-1
Delete Characters, 6-5 EOF:, 1-11
DELETE FILE, 4-25 ERA Command, 1-5
Destination Devices, 1-10 Error Messages, 7-20,7-21,
Device Assignments, 1-10,1-19 7-22,H-1,1I-1
Device Mapping, 1-10,1-21 Examine Program State, 7-32
Device Names, 1-10,1-11 Exit, 6-6
Device Status, 1-18 EXM, 5-7
DEV:, 1-19 . Extended System Function Calls,
DIR Attribute, 1-18 4-47
DIR Command, 1-5 Extent, 3-3,3-4,3-5
DIR BUF, 5-5 Extent Mask, 5-7
DIRECT CONSOLE 1/0, 4-19 Extent Number, 3-5,3-6
Direct Memory Access Buffer, 4-23 Extent Record Count, 3-5,3-6
Disassemble Memory, 7-29
Disc Capacity, 3-3,3-4
Disc Directory, 3-7,3-8 F
Disc Drive Identifier, 1-8,3-1
Disc File Entry, 3-3,3-4 F (DDT Command), 7-27
Disc Format, A-1,A-2 F (ED Command), 6-6
Disc Group Allocation Blocks, 3-5, FCB, 3-4,7-28
3-7 FDOS, 2-2,2-3
DISC LOGIN VECTOR, 4-31 File Access, 3-2
Disc Organization, A-1,A-2 FILE ATTRIBUTES, 4-37
Disc Parameter Block, 4-38,5-5 File Control Block, 3-4
Disc Parameter Header, 5-4,5-5 File Extension, 3-1,3-2,3-5,3-6,
Disc Tables, 5-4 A-1
Display Memory, 7-26 File Name, 3-1,3-5,3-6
DMA Buffer, 3-8,3-9,4-23,4-26, File Reference, 3-1
4-27,4-33,5-3,5-4 File Size, 3-3,3-4,4-43,A-2
ppB, 4-38,5-5,5-6,5-7 File Structure, 3-2
DPH, 5-4,5-5,5-6 File Type, 3-1,A-1
Drive Code, 3-5,3-6 Fill Memory, 7-27
DRIVE 1D, 2-4,2-5 Find, 6-6
Drive Identifier, 3-1 Find With Autoscan, 6-10
DRM, 5-7 Flag Byte, 4-52,4-53
DSM, 5-7 FORMAT Command, 1-6
DSK:, 1-20,1-21 Fundamental Disc Operating System,
DUMP Command, 1-6,7-23 2-3

Dynamic Debugging Tool, 1-6,7-23

IN-2

"

G

G (DDT Command), 7-27
GET ADDR (ALLOC), 4-34
GET IOBYTE, 4-11

GET R/0 VECTOR, 4-36
GET/SET USER NUM, 4-39
GO, 7-34

H

H (ED Command), 6-7

HEX File Extension, 3-2,7-2
HOME, 5-3

HP Extended Function Calls, 4-47
HP Machine Number, 4-61

HP Version Number, 4-58

I

I (DDT Command), 7-28

I (ED Command), 6-7 :

Immediate Operand Instructions, 7-16

Increment and Decrement Insructions,
7-16

Insert FCB, 7-28

Insert Text, 6-7

Instruction Set, 7-13,G-1

J

J (ED Command), 6-8

Jump Vector Buffer, 4-58,4-59,4-60
Jump Vector Table, 4-59,5-1,5-2
Juxtapose String, 6-8

K

K (ED Command), 6-9
Keyboard Functions, B-1
Keycodes, D-1

Kill Lines, 6-9

L

L (DDT Command), 7-29

L (ED Command), 6-9

Label Field, 7-4

LIF Directory, 1-2

Line Move, 6-9

Line Number Field, 7-4

LIST, 5-3

List Device Names, 1-14,1-21

LIST OUTPUT, 4-9

LISTST, 5-4

LOAD Command, 1-6,7-23

Logical Device Names, 1-10

Logical Operation
Instructions, 7-18

Logical Record, 3-2,3-3

LPT:, 1-10

LST:, 1-10

M

M (DDT Command), 7-29

M (ED Command), 6-10

Macro Definition, 6-1¢
Memory Addresses, 2-2

Memory Allocation, 2-2
Memory Buffer, 4-51,4-52,4-53
Memory Buffer Image, 6-1,6-2
Memory Organization, 2-1

Move Memory, 7-29

IN-3

N

N (ED Command), 6-10
NUL:, 1-11
Numeric Constants, 7-6

0

O (ED Command), 6-19
Object Code, 7-2
OEM Number, 4-49
OFF, 5-7,5-8
Opcodes, 7-13,G-1
OPEN FILE, 4-24,4-21
Operand Field, 7-4
Operation Field, 7-4

P

P (ED Command), 6-11

PARAMETER ADDRESS, 4-38

Physical Device Names, 1-18

Physical Record, 3-2,3-3

PIP Command, 1-6,1-8

PIP Options, 1-11

Pound Sign (ED Command), 6-4

Print Pages, 6-11

PRINT STRING, 4-13

Program Control Instructions,
7-14,7-15

PRN File Extension, 3-2,7-2

PRN:, 1-11

PTP:, 1-19¢

PTR:, 1-10

PUNCH, 5-3

PUNCH OUTPUT, 4-8

PUN:, 1-19

IN-4

Q

Q (ED Command), 6-11

R

R (DDT Command), 7-30

R (ED Command), 6-12

Radix Indicators, 7-6

Random Record, 4-44

RDR:, 1-1¢

READ, 5-3

READ CONSOLE BUFFER, 4-14,
4-15

Read File, 7-30

Read Library File, 6-12

READ MEMORY BUFFER, 4-51

READ RANDOM, 4-40,4-41

READ SEQUENTIAL, 4-26

READER, 5-3 :

READER INPUT, 4-7

Read-only Status, 1-18,1-21,
4-36

Read-write Status, 1-18, 4-36

Region Bounds, 4-54,4-55

REN Command, 1-5

RENAME FILE, 4-30

Reserved Operand Words, 7-9

RESET DISC SYSTEM, 4-18

RESET DRIVE, 4-45

Restart ED, 6-7

RETURN HP MACHINE NUMBER,
4-61

RETURN HP VERSION NUMBER,
4-50

RETURN OEM NUMBER, 4-49

Return Original File, 6-10

RETURN REGION BOUNDS, 4-54,4-55
R/0 Attribute, 1-18
R/W Attribute,1-18

S

S (DDT Command), 7-30

S (ED Command), 6-12

SAVE Command, 1-5,7-33,7-34
SCR, 5-5

SEARCH FOR FIRST, 4-23,4-24
SEARCH FOR NEXT, 4-24
Sector Map, A-2

SELDSK, 5-3,5-6

SELECT DIsC, 4-19

SET DMA ADDRESS, 4-33

SET IOBYTE, 4-12

SET RANDOM RECORD, 4-44
SETDMA, 5-3

SETSEC, 5-3

SECTRAN, 5-4

SETTRK, 5-3

SFC, 4-1

Sleep, 6-15

Source Code, 7-1,7-3

Source Devices, 1-10

SPT, 5-6,5-7

STAT Command, 1-6,1-17

STAT File Attributes, 1-18
String Constants, 7-7
SUBMIT Command, 1-22,1-23,1-24
Substitute Memory, 7-30
Substitute String, 6-12

SYS Attribute, 1-18

System Function Calls, 4-1
SYSTEM RESET, 4-4

T

T (DDT Command), 7-31

T (ED Command), 6-13

Text Editor, 6-1

TPA, 2-2,2-4

Trace Execution, 7-31

Transient Commands, 1-5,1-6

Transient Program Area, 2-2,
2-3,2-4

Transient Programs, 2-6

TTY:, 1-10

TXT File Extension, 3-2

TYPE Command, 1-5

Type Lines, 6-13

U

U (DDT Command), 7-31

U (ED Command), 6-13

UcCl:, 1-10

ULl:, 1-10

Untrace, 7-31

Upper /Lower Case Translate,
6-13

UPl:, 1-10

up2:, 1-10

UR1l:, 1-10

UR2:, 1-10

USER Command, 1-5

User Memory Space, 2-2

User Number, 3-5,3-7,4-39

USR:, 1-20

IN-5

W

V (ED Command), 6-14
VAL:, 1-2¢
Verify Line Numbers, 6-14

W

W (ED Command), 6-14

Warm Start, 1-7,2-4,2-5

WBOOT, 5-2

WRITE, 5-4

Write Lines, 6-14

WRITE MEMORY BUFFER, 4-52,4-53
WRITE PROTECT DISC, 4-35
WRITE RANDOM, 4-42

WRITE SEQUENTIAL, 4-27

WRITE W/ZERO FILL, 4-46

X

X (DDT Command), 7-32
X (ED Command), 6-15
X: r 1—5

XSUB Command, 1-6,1-25
Z

Z (ED Command), 6-15

IN-6

HP 82900A/82848A CP/M® System
Owner’s Documentation
Supplement

This supplement contains updating information for the owner’s documentation of the HP 82900A CP/M Sys-
tem Introduction to the HP 82900A CP/M® System, part number 82900-90007; HP 82900A CP/M® System
Reference Manual, part number 82900-90001; and HP 82900A CP/M® System Pocket Guide, part number 82900-
90008).

The CP/M operating system for your Series 80 computer has been revised to Rev. C. The information contained
in this supplement describes the changes made to the operating system.

New Special CP/M Key Assignments

In the introductory manual under ‘‘Special CP/M Key Assignments,’”’ page 39. Several new special key
assignments have been added to the existing set. The new assignments and their functions are listed in the table

below.
Key Function
Sends the “control-D” character (ASCIl 004).
Sends the “control-S” character (ASCIl 019).
) Sends the “‘control-E”’ character (ASCII 005).
® Sends the “‘control-X’' character (ASCII 024).
Sends the “control-Y” character (ASCII 025).
I/R Sends the ‘““‘control-V”’ character (ASCIl 022).
Sends the “‘control-G” character (ASCIl 007).
Sends the “control-W’’ character (ASCII 023).
Sends the "control-Z" character (ASCIl 026).

New Cursor Control Codes

In the reference manual under appendix E ‘““Cursor Control Codes,” page E-1 and in the pocket
guide under ‘“Cursor Control Codes,”” page 39. Two new cursor control codes have been added to the
system. The table below describes these new codes and their function.

sControI Instruction Description

equence

ESC . & Cursor Off | Turns off the display of the cursor.
ESC .1 Cursor On | Turns on the display of the cursor.

New Displayable Characters

In the reference manual under appendix C “ASCII Character Codes,” page C-1 and in the pocket
guide under ‘‘Character Codes,” page 40. Three new displayable characters have been added to the exist-

ing set by replacing three ASCII control characters with displayable characters. The changes are summarized in
the table below.

Oid New Decimal | Hexidecimal Keystroke
Character | Character Code Code y
FS Vertical 28 1C ~
Bar (1)
GS Horizontal 29 1D ~D
Bar (=)
us Cross 31 1F ~()
Bars (+)

A iciano

Portable Computer Division
1000 N.E. Circle Blvd., Corvallis, OR 97330 U.S.A.

5957-8059 ©Hewlett-Packard Company 1983 Printed in U.S.A. 9/83

[ﬁﬁ HEWLETT

PACKARD

Personal Computer Division
1010 N.E. Circle Bivd., Corvallis, OR 97330, U.S.A.

Reorder Number Printed in U.S.A. 6/82
82900-90001 82900-90016

