Pascal/MT+™
Language
Reference Manual

Copyright © 1983
Di gital Research
P. 0. Box 579
801 Li ght house Avenue
Paci fic G ove, CA 93950
(408) 649-3896
TWK 910 360 5001

Al'l Rights Reserved

COPYRI GHT

Copyright © 1983 by Digital Research. Al rights
reserved. No part of this publication may be
reproduced, transmtted, transcribed, stored in a
retrieval system or translated into any |anguage
or conputer |anguage, in any form or by any mneans,
el ectroni c, mechani cal , magneti c, opti cal,
chem cal, manual or otherw se, wthout the prior
witten permission of Digital Research, Post Ofice
Box 579, Pacific Gove, California, 93950.

This manual is, however, tutorial in nature. Thus,
the reader is granted perm ssion to include the
exanmple prograns, either in whole or in part, in
his or her own prograns.

DI SCLAI MER

Digital Research makes no representations or
warranties with respect to the contents hereof and
specifically disclaims any inplied warranties of
merchantability or fitness for any particular
pur pose. Further, Digital Research reserves the
right to revise this publication and to nake
changes from time to time in the content hereof
wi thout obligation of Digital Research to notify
any person of such revision or changes.

TRADEMARKS

CP/M and CP/M86 are registered trademarks of
Digital Research. Pascal /MI+ is a trademark of
Di gital Research.

The Pascal/ M+ Language Reference Manual was
prepared wusing the Digital Research TEX Text
Formatter, and printed in the United States of
Aneri ca.

R I b S S S R I kR R

* First Edition: February 1983 *

Rk I I kR I kI

Foreword

The Pascal / MT+™ | anguage is a full inplenentation of standard
Pascal as set forth in the International Standards Organization
(1SO standard DPS/ 7185. The Pascal / M+ | anguage al so has several

additions to standard Pascal. These additions nmake Pascal/MI+ nore
suitable for conmercial programming, and increase its power to
devel op high-quality, efficiently maintainable software. The
additions fall into four categories:

?? enhanced 1/0O

?? additional data types

?? access to the run-tinme system

»

nmodul es and overl ays
?

Pascal / M+ is useful for both data processing applications and
for real-tine control applications.

The Pascal / M+ system which includes a conpiler, I|inker, and
progranm ng tools, is inplemented on a variety of operating systens
and m croprocessors. Because the |anguage is consistent ampng the
vari ous i mpl ement ati ons, Pascal / MI'+ prograns are easily
transportabl e between target processors and operating systens. The
Pascal / M+ system can al so generate software for use in a ROM based
environment, to operate with or w thout an operating system

Thi s manual describes the Pascal /MI+ |anguage with enphasis o
those features that are unique to Pascal/M+. Information in this
manual covers all |anguage-related topics independent of the
i mpl emrent at i on.

| nfornmation about t he conpi | er, |'i nker, t he Pascal / MI
progranm ng tools, and topics related to the operating system are
contained in the version of the Pascal/M+ Language Progranmer’
Cui de pertinent to your specific inplenentation.

This manual assunes you are already famliar with the Pascal
| anguage in general. If you are not famliar with Pascal, refer t
Appendi x C for a bibliography of textbooks.

This manual uses Backus-Naur Form (BNF) notation to formally
describe the syntax of Pascal statenents. If you are not famliar
with BNF notation, see Appendi x B.

Table of Contents
1 Pascal / MT+ Prograns
1.1 Program Structure
1.1.1 Program Headi ng
1.1.2 Declarations and Definitions
1.1.3 Statenent Body
1.1.4 Modul es
1.2 Scope
1.3 Comments
2- ldentifiers and Constants
2.1 ldentifiers
2.2 Constants
2.2.1 Nuneric Literals
2.2.2 String Literals
2.2.3 Naned Constants
3 Variabl es and Data Types
3.1 Type Definition

3.2 Variabl e Decl aration

w
w

Si mpl e Types

BOOLEAN

CHAR

| NTEGER and LONG NT

REAL

BYTE and WORD
User-defined Ordinal Types
Poi nters

W W w0 0w w
W W W W ww
~NO OGP WN R

w
N

Structured Types

.4.1 Arrays
.4.2 Strings
.4.3 Sets

. 4.4 Records

WwWwww

(.AJ(.A)(.A)(.IA)(.A)(.AJ(.AJ
[o20N¢) &) IR SN SN CV N OV)

Table of Contents
(continued)

4 Operators and Expressions
4.1 Arithnetic Expressions
4.2 Bool ean Expressions
4.3 Logi cal Expressions

4.4 Set Expressions
5 Statenents

The Assignment St at enent
The CASE St at enment

The Enpty Statenent

The FOR St at enment

The GOTO St at enrent

The | F St at enent

The REPEAT St at enent
The WHI LE St at enent

The WTH St at erent

goaann oo
OCO~NOOITP~,WNE

6 Procedures and Functions

6.1 Procedure Definitions

6.2 Paraneters

6.3 Conformant Arrays

6.4 Predefined Functions and Procedures
ABS Functi on
ADDR Functi on
ARCTAN Functi on
ASSI GN Functi on
BLOCKREAD, BLOCKWRI TE Functi on

CHAI N Functi on
CHR Function

Vi

4-3

4-3

4-5

U'IU'IU'IU'I(IJ'IU'IU'IU'IU'I
CO~NOOUTWWN -

6-3
6-5
6-8

6-11
6-12
6- 13
6- 14
6- 16
6- 17
6- 18

Table of Contents

(continued)
CLCSE Functi on
CONCAT Functi on
COPY Functi on
CCS Functi on
DELETE Functi on
DI SPOSE Functi on
EQLN, EOF Functi on
EXIT Function
EXP Functi on
FI LLCHAR Functi on
GET Functi on '
H, LO SWAP Function
I NLI NE Functi on
I NSERT Functi on
| ORESULT Functi on
LENGTH Functi on
LN Functi on
MAXAVAI L, MEMAVAI L Function
MOVE, MOVERI GHT, MOVELEFT Functi on
NEW Functi on
ODD Functi on
OPEN Functi on
ORD Functi on
PACK, UNPACK Functi on
PAGE Functi on
PGS Functi on
PRED Functi on
PURGE Functi on
PUT Functi on
READ, READLN Function .

READHEX, WRI TEHEX, LWARI TEHEX Functi on

RESET Functi on

REWRI TE Functi on

RI MB5, SIMB5 Function

ROUND Functi on

SEEKREAD, SEEKWRI TE Functi on
SHL, SHR Functi on

SI N Functi on

S| ZEOF Functi on

SR Function

SQRT Function

SUCC Functi on

TRUNC Functi on

TSTBI T, SETBIT, CLRBIT Function
VWAI T Function

VWAB, GNB Functi on

WRI TE, WRI TELN Functi on

6- 19
6- 20
6-21
6-22
6-23
6- 24
6- 25
6- 27
6- 28
6- 29
6- 30
6- 31
6- 32
6- 33
6- 34
6- 35
6- 36
6- 37
6- 38
6- 40
6-41
6-42
6-43
6- 44
6- 45
6- 46
6-47
6-48
6- 49
6- 50
6-51
6-52
6- 53
6- 54
6- 55
6- 56
6- 57
6- 58
6- 59
6- 60
6-61
6- 62
6- 63
6- 64
6- 65
6- 66
6- 67

Table of Contents
(continued)

@DOS Functi on
@D0s86 Functi on
@nND Functi on

@RR Functi on

@1LT Function

@HERR Functi on

@WRK Function

@RLS Function

7 Input and Qutput

7.1 Fundanent al s of Pascal /MI+ |/0O
7.2 Regular 1/0
7.3 I NP and OUT Arrays
7.4 Redirected I/0O
7.5 Sequential /0

1 TEXT Files

7.5.
7.5.2 Witing to the printer

7.6 Random Access 1/ 0O

Viii

6- 69
6-70
6-71
6-72
6-73
6-74
6-75
6-76

Appendixes
Reserved Wrds and Predefined Identifiers
BNF Not ati on
Di fferences from| SO Standard

Bi bl i ography

Figures, Tables and Listings

Fi gures
1-1 Block Structure in Pascal /Ml
7-1 Lines in a TEXT File
7-2 Records in a File
Tabl es
3-1 Predefined Data Types
4-1 Summary of Pascal / M+ Operators
4-2 Bool ean Operations
4-3 Logical Operators
6-1 Predefined Functions and Procedures
6-2 Device Nanes
6-3 EOLN, EOF Values for a TEXT File
6-4 EOF Values for a Non-TEXT File
A-1 Pascal / MT+ Reserved Wrds
A-2 Pascal / M+ Predefined ldentifiers
Li stings
1-1 Sinple Pascal / M+ Program
1-2 Declarations and Definitions
1-3 Exanpl e of Scope Rul es
1-4 Exanmple Programw th Comments
3-1 Program Using Sets
4-1 Set Expressions

29000
A WNNBE
oo

NN
WN P

N
(63 =N

FORWARD Decl ar ati ons

Par anet er Passi ng

Qut put from VALVAR Program
Procedural Paraneters

Conf ormant Array Exanple

File Input and Qut put
Redirected 1/0O
TEXT File Processing

6- 26
6- 26

Witing to a Printer and Nunmber Formatting

Random File 1/0O

7-15

7-12

Section 1
Pascal/MT+ Programs

1.1 Program Structure

Pascal / M+ is a block-structured |anguage. That is, you group
one or nore statements into logically related units called bl ocks.
Every block has a heading, an optional declaration and definition
section, and a set of statements. In every Pascal/MI+ program the
outernost block is the main program

You can nest blocks inside your program That is, you can put one
bl ock inside another block, but not overlap them I nsi de bl ocks,

you can al so nest procedures and functions (see Section 6).
Figure 1-1 illustrates the typical block-structure of Pascal/Mr+.

BEG N
[END

Figure 1-1. Block-structure in Pascal/Mr+

— END

— END

1-1

Pascal / MT+ Reference Manual 1.1 Program

Structure

Listing 1-1 shows a small Pascal/MI+ program containing a

nest ed bl ock.

PROGRAM FI RST_1,;

CONST

LIMT = 10;

MESSACE = ' TESTI NG PASCAL/ MI'+' ;
VAR

NAME : STRI NG

PROCEDURE RESPOND (ST : STRI NG ;

VAR
| : I NTEGER
BEG N
FOR| :=1 TOLIMT DO
BEG N
WRI TELN (ST);
ST := CONCAT (' *, ST) (* SHIFTS NAME TO RI GHT *)
END
END;
BEG N

VR TELN (MESSAGE) ;
WRI TELN (' WHAT |'S YOUR NAMVE?') ;
READLN (NANE) ;
RESPOND (NAME) ;
WRI TELN (* FINI SHED ‘', MESSAGE)
END.

Listing 1-1. Sinple Pascal / M+ Program

1.1.1 Program Headi ng
A program heading has the follow ng form

PROGRAM <pr ogr am nane> {(<Program paraneters>)};

The <program nane> has no significance inside the program but
shoul d not use the name for any other data itemin the program
opti onal <program paraneters> have no speci al neaning in Pascal/ M+,

as they do in some other versions of Pascal.

1-2

Pascal / MT+ Ref erence Manual 1.1 Program Structure

1.1.2 Declarations and Definitions

You nust define an identifier before you use it in a program
unless the identifier is predefined by the |anguage (see Appendix
A). Listing 1-2 shows an exanple of the declaration and definition
part of a program illustrating each of the mgjor kinds of
decl arations as shown in the following |ist.

1) LABEL decl arati ons

2) CONSTANT decl arati ons

3) TYPE definitions

4) VAR decl ar ati ons

5) PROCEDURE and FUNCTI ON defi ni tions

Not e that LABEL, CONSTANT, TYPE, and VAR decl arations can be in
any order, and there can be nultiple occurrences of each type in a
nmodul e. PROCEDURE and FUNCTI ON decl arati ons nust appear |ast, and
there can be only one section of these per nodul e.

Section 3 describes the wvarious kinds of data type
definitions.

1-3

Pascal / M+ Ref erence Manual 1.1 Program Structure

LABEL
34, 356, 755, 1000;

CONST
ToP = 100;
BOTTOM = - TOP;
LIMT = 1.0E-16;
MESSAGE = ' THANK YOU FOR NOT SMOKI NG ;
TYPE
COLOR = (RED, YELLON BLUE, GREEN, ORANGE);
INDEX = BOTTOM .. TOP;
PERPT = "PERSON,
PERSON = RECORD
NAVE,
ADDRESS : STRI NG
PHONE : STRING 8]
END;
VAR
COLR : COLOR
I, J: INTEGER

LI ST : ARRAY [INDEX] OF PERPT;

PROCEDURE ECHO (ST : STRING);
BEG N

WRI TELN (ST, ' * ST)
END;

Listing 1-2. Declarations and Definitions

1.1.3 Statenment Body

The words BEA N and END surround the body of statements in a
bl ock, which can contain zero or nore statenents. If the block is
the main program block, you nust put a period after the word END.
Wthin the statenment body, separate each statenent with a sem col on.

1.1.4 Modul es

A nmodule is a portion of a programthat you conpile separately,
and then link to the main program The general formof a nodule is
the same as a program except that a nodule does not have a min
stat enent body. The only executable code in a nodule is contained
in procedures and functions. The following exanple illustrates a
si npl e singl e-procedure nodul e.

1-4

Pascal / MT+ Ref erence Manual 1.1 Program Structure

MODULE SI MPLE;

PROCEDURE MARK (CALL_NUM : | NTEGER);
BEG N

WRI TELN (' I N MODULE SI MPLE, CALLED FROM ', CALL_NUM
END;

MODEND.
Notice that the word MODULE replaces the word PROGRAM and that the
wor d MODEND r epl aces the main statenment body.
Refer to the Pascal/MI+ Language Programmer's Guide for your

impl enentation for nore information about nodules and nodul ar
prograns.

1.2 Scope

Every identifier in a Pascal/M+ program has a scope. The
scope of an identifier is the set of all blocks where you can make a
valid reference to the identifier. The normal scope of an identifier
is anywhere inside its defining block, starting from its actual
definition.

However, when a nested bl ock redefines the sane identifier, the
outer variable is inaccessible fromthe inner bl ock. When the sane
identifier has multiple definitions, the innernmost definition is the
one that applies.

Thi s manual uses the ternms global and local. The declarations
at the outernost level in the program are the global declarations.
Declarations in a block are local to that block. A variable is
local to a block if its declaration is in that sanme block. Inside a
nested block, a variable declared in a containing block is usable,
but it is not local to that nested block. Wthin a contai ned bl ock,
a reference to a variable in a containing block is called an “up
| evel reference”.

Listing 1-3 shows a program containing nested blocks wth

multiple definitions for the sane identifiers. The comrents in the
program expl ai n which definitions apply at various points.

1-5

Pascal / MT+ Ref erence Manual 1.2
Scope
PROGRAM SHOWBCOPE;

VAR
X, Y, Z: | NTEGER (* X Y,Z ARE GLOBAL *)

PROCEDURE PRCCL,

VAR
BEG N
X:=y/l Z (* Y & Z FROM MAI N BLOCK *)
END;
PROCEDURE PROC2;
VAR
W: | NTEGER; (* WLOCAL TO PROC2 *)
Y : STRING (* Y LOCAL TO PROC2 *)
BEG N
Y := ' ABCDEFG ;
W:= X (* X FROM MAI N BLOCK *)
Z:=XDV3 (* X FROM MAI N BLOCK *)
END;
BEG N
Y := 35; (* X, Y, & Z ARE ALL | NTEGERS *)
Z = 12; (* IN TH'S BLOCK *)
PROCL; (* CHANGES X *)
PROC2; (* CHANGES Z *)
WRI TELN (X, Y, 2)
END.

Listing 1-3. Exanple of Scope Rul es

1.3 Conments

You can put a comment anywhere in a programthat you can put a
bl ank space; the conpiler ignores conments. There are two ways to
wite a comment in a Pascal /MI+ program

?? Surround the comment with the characters { and }
?? Surround the conment with the character pairs (* and *)

The conpiler differentiates between the two sets of coment
delimters, so you can nest comments. You can use one set of
delimters for regular comments in your program and use the other
set of delimters to comment out sections of code for debuggi ng or
devel oprment, as shown in the followi ng program fragnent.

1-6

Pascal / MT+ Ref er ence Manual 1.3 Coments

PROCEDURE WALKTREE (TREE : TREEPT);

BEG N
W TH TREE® DO
BEG N
WALKTREE (LEFTREE); { PRE-ORDER WALK OF TREE }
WRI TELN (| NFO. NAVE) ;

(* **** REMOVE TH S LI NE FOR DI AGNOSTI CS

WRI TELN (" **** | N WALKTREE ****');

| F MARKED(NODE) THEN { LOOK FOR LOOPS | N TREE }
BEG N
WRI TELN (* LINK ERROR IN TREE');
TREEDUMP (TREE) { WLL NOT RETURN }
END
ELSE
MARK (NODE); { TREE OK SO FAR }

*xxxkxx REMOVE THI'S LI NE FOR DI AGNOSTI CS *)

WALKTREE (RI GHTREE)
END
END;

Listing 1-4. Exanple Programwith Conment s

End of Section 1

1-7

Section 2
Identifiers and Constants

This section describes Pascal/ M+ identifiers, and the rules
for formng literal constants. It also describes how to define
named constants.

2.1 Identifiers

A Pascal /MI+ identifier can represent a variable, a type, a
constant, a procedure or function, or an entire program The sane
rules apply to all Pascal/M+ identifiers, regardless of what Kkind
of objects they represent.

A Pascal / M+ identifier can be any length, as long as it fits
on one |line. However, the conpiler uses only the first eight
characters to distinguish one identifier from another. Only the
first seven characters are significant in external identifiers.

Identifiers can contain any conbination of letters, digits, and
underscores. They nust begin with a letter, and they cannot contain
any bl ank spaces. The conpiler ignores underscores and typecase.
For exanpl e,

Ab C
is the sane as
abc
You can also use an @as the first character in an identifier,
as long as you do not use the @conpiler option. You cannot use the
@inside an identifier. The conpiler allows the @character, so you
can access the run-tinme routines whose nanme begins with @
However, if you use the @ conpiler option, then the conpiler

interprets the @ character as the standard pointer character, and
does not allow the @as part of an identifier.

The followi ng are exanples of valid Pascal/Mr+ identifiers:
X
@PNMRD
file_name
LA225prefi x

Thisfile
Thisfile_for_91803_zip_only

The last two exanpl es are indistinguishable to the conpiler.

2-1

Pascal / MT+ Ref er ence Manual 2.1 ldentifiers

The following are exanples of invalid identifiers:

X2 Contains an illegal character
123x Begins with a digit

program Reserved word

STY@HM @not first character

X 22 Cont ai ns a bl ank space

You cannot use reserved words, such as BEGN and IF, as
identifiers. However, you can use predefined identifiers such as
WRI TELN and BOOLEAN, to nane any object in your program Predefined
identifiers are defined one |evel above the global Ilevel in your
program so changing the definition of a predefined identifier nmakes
the old object inaccessible from within the scope of the new
definition.

Appendi x A lists the Pascal/M+ reserved words and predefined
identifiers. The Pascal M+ Language Programer's Guide for your
i npl enentation contains the list of the run-tine entry-point nanes,
as well as information about external identifiers.

Note: if you inadvertently use a run-tinme entry-point nane as an
external identifier, your program m ght not |ink properly.

2.2 Constants

You can express a constant as a literal value, or you can give
the constant a nane and then use the nane anywhere you need that
val ue. Pascal /MI+ constants can be strings, integers, real nunbers,
or scal ar types.

2.2.1 Nuneric Literals

A nuneric literal can be a decimal integer, a hexadecinal
integer, a long integer, or a real nunber. The form of the constant
determines its type.

Note: long integers are not available with the 8-bit versions of
Pascal / MT+.

An integer literal is any whole number in the range -32768 to
32767. An integer literal cannot have a decimal point or any
conmas. To write an integer in hexadecimal, start it with a $. The
following are exanples of valid integer literals:

- 3456
$FF00
32767
$EFFF

Pascal / MT+ Ref er ence Manual 2.2
Const ant s

A long-integer constant nust start with a pound sign, #. For
negati ve nunbers, put the mnus sign before the #. The follow ng
are exanples of long-integer literals:

#6234343

#0
- #678988

A real -nunber literal can be either in fixed- or floating-point

format. In fixed-point format, at |east one digit nust precede and
follow the decimal point. The formfor a floating-point literal is
a nunber with or without a decinmal point, followed by an E, followed
by an optionally signed integer. Neither format can contain any
bl anks or commas. The following are exanples of valid real-nunber
literals:

64. 78E- 13

-65.3

- 33. 677E+10

In floating-point format, the E is interpreted as "tines 10 to
the power of.” For exanpl e,

6. 3E5

is 6.3 tines ten to the power of five (10°%, or 630000.

2.2.2 String Literals

A string literal can contain any nunber of printable
characters, as long as the string fits on one line. You wite a
string literal by enclosing it in single apostrophes. Ever yt hi ng

between the apostrophes, including blanks, is part of the string.
Use two single apostrophes to represent one single apostrophe inside
a string. Inside strings wupper- and |lower-case letters are
distinct. The follow ng are exanples of valid string literals:

"*** | NVALI D EDI T COMVAND ***’

'Steve'’s Program
If you need to define a string that is longer than you can fit

on one line, or if you need to put control characters in a string,
use the string functions described in Section 6.

2-3

Pascal / MT+ Ref erence Manual
Const ant s

2.2.3 Naned Constants

2.2

A constant definition defines an identifier as a synonymfor a
constant value. You can use a naned constant anywhere that you can

use a literal. The following is an exanple of a constant definition
section:
CONST

nmessage = 'VERSI ON 3. 3';

si ze = 100;

limt = -Si ze;

esc = $l B;

conv_fact = 3. 27E-3;

null _str = R

Noti ce that Pascal/Mr+ allows the null string.

End of Section 2

Section 3
Variables and Data Types

This section describes the data types supported by Pascal / MI+.
There are two general categories of data types: sinple and
structured. Sinple data types, also called scalar types, have only
one elenent per data item Integers, characters, and pointers are
exanpl es of sinple types.

Structured types contain nore than one elenent within a data
item Records, strings, and arrays are exanples of structured

types.

This section does not discuss files; see Section 7 for
information about files.

3.1 Type Definition

The compiler wuses a type definition to determine how to
all ocate space for a variable. The type definition section of a
bl ock associates nanmes with specific type definitions, as in the
foll owi ng exanpl e:

TYPE
NUMBERS = ARRAY [I|..10] OF | NTEGER;
STRPT = ASTRI NG
LETTER = ‘A .. 'Z';
3.2 Vari abl e Decl aration

A variable declaration establishes the type of a variable,
and determnes its scope. You nust declare all variables before you
can use them in a program The following is an exanple of a
vari abl e declaration section in a bl ock.

VAR
X Y, Z . | NTEGER,
NAMES . LI ST;
NUML . 0..200;
NUM2 : 0..200;

Notice in the exanple above how you can group nore than one
nane with a particular type definition, and that you can use an
explicit type definition instead of just a type nane.

If the conpiler is using strong type checking, you nust declare
variables with the same type nane if you want the variables to be
conpatible. Strong type checking requires that conpatible

Pascal / MT+ Ref er ence Manual 3.2 Vari abl e Decl aration

vari ables have exactly the same type, not just the sane internal
structure. In the above exanple, NUML and NUM2 are not conpatible
under strong type checking. To nmake them conpatible, you could use
t he decl arati on,

NUML, NUMR : 0..200;

See the programer's guide for nore information about how the
conpi l er performs type checking.

Pascal / M+ supports absolute variables. That is, you can
force a variable to be stored at a specific location using an
absolute variable declaration. See the Programer's Guide for
details.

Pascal / M+ al so supports external variables. That is, you

can declare variables in one nobdule and reference them in other
nodul es.

3.3 Sinmple Types

Pascal / M+ has several predefined sinple data types,
sunmari zed in Table 3-1. Al of the sinple data types, except the
reals, are ordinal types. An ordinal type is one in which each

possible value is countable with integers. The ASCI|I character set
is an exanple of an ordinal type.

You can define your own enunerated or subrange data types.
An enunerated type is an ordinal type whose conplete set of values
you explicitly specify. A subrange type is a contiguous portion of
sone ot her ordinal type.

Table 3-1. Predefined Data Types

Data type Si ze Range
CHAR 1 8-bit-byte 0 to 255
BOCOLEAN 1 8-bit-byte true or fal se
| NTEGER 2 8-bit-bytes -32768 to 32767
LONG NT 4 8-bit-bytes 2%2.1 to 27%
BYTE 1 8-bit-byte 0 to 255
WWORD 2 8-bit-bytes 0 to 65535
BCD REAL 10 8-bit-bytes see Programer's
FLOATI NG REAL 8 8-bit-bytes Gui de
Pascal / MI'+ provi des four "pseudo- functi ons" or type

conversion operators to convert from one sinple type to another.
These pseudo-functions do not generate any code, but sinply direct
the conpiler to treat the following 8 or 16-bit itemas a different
type. The four pseudo-functions are

3-2

Pascal / M+ Ref erence Manual 3.3 Sinmple Types

?? CHR(X) returns the character whose ASCII value is the
speci fi ed expression.

?

?? ORD(X) returns the ordinal value of the expression. The
or di nal value of a character is its ASCI numeric
representation.

?

?? ODD(X) returns the BOOLEAN value TRUE if the expression is
odd, otherwise it returns the BOOLEAN val ue FALSE.

?

?7? WORD(X) directs the conpiler to treat the specified

expression as a native machi ne word.
3.3.1 BOOLEAN

The BOOLEAN type has two values: TRUE and FALSE. The ordinal
value of FALSE is 0, and the ordinal value of TRUE is 1.

A BOOLEAN variable uses one byte, even in a packed structure
(see Section 3.4). Wthin the byte, only the |east-significant bit
matters in determ ning the val ue. If the bit is set, the value of
the variable is TRUE, if not, the value is FALSE. However, | ogical
operations use the whol e byte.

3.3.2 CHAR

Variables of type CHAR wuse one byte. The internal
representation of a character is the ASCI| value of the character.
The range for CHAR variables is CHR(O to CHR(255).

To express a CHAR value in a program enclose the character in
single apostrophes if it is a printable character, or use the CHR
pseudo-function. Use two single apostrophes to represent the single
apostrophe character.

The following exanple program denonstrates the CHR and ORD
pseudo- functi ons.

PROGRAM CHR_ORD;

VAR
I, J : INTEGER
C, D: CHAR
BELL : CHAR
BEG
| = 7;
CcC:="'8";
D:=CHR(l + ORD("'0")); (* ASCIl VALUE OF '0" 1S 48 *)
J = ORD(C - ORD('0');
BELL : = CHR(7)
END.

3-3

Pascal / M+ Ref erence Manual 3.3 Sinple Types

3. 3.3 I NTEGER and LONG NT

I NTEGER variables are 2 bytes long. Integers can range from-
32768 to +32767. An integer literal in the range 0 to 255 takes up
only one byte in the code.

LONG NT variables are 4 bytes |ong. The range for |Ilong
integers is 2% to 2%-1. You can wite a LONGNT literal only in
decimal; wite it like a regular integer literal, but start the

nunber with the # character. For exanpl e,
#6234343

You can define LONG NT subranges, but you cannot use them as indexes
for arrays.

There are three functions for converting between the LONG NT
and ot her data types:

FUNCTI ON SHORT(L: LONG NT): | NTECER
FUNCTI ON LONG (S: SHORT): LONG NT;
FUNCTI ON XLONG(S: SHORT): LONG NT;

A short data type is any 8- or 16-bit type, such as CHAR
BOCLEAN, | NTEGER, or WORD. The function LONG pads the short val ue
with zeros. The function XLONG sign-extends the short value into
t he hi gh-order word.

See your programer's guide for specific information about the
internal representation of the | NTEGER and LONG NT data types.

Note: the LONG NT type is not available in the 8-bit versions of
Pascal / MT+.

3.3.4 REAL

Pascal / M+ handles real nunbers in two ways to support
di fferent applications:

?? BCD for business applications
?? Binary floating point for scientific and engineering
appl i cations.

A conmmand-line option tells the conpiler which format to use.
The internal representation and range of real nunbers depends

on the processor. See your programrer's guide for details about the
internal representation of real nunbers.

Pascal / M+ Ref erence Manual 3.3 Sinple Types

The following are exanples of real-nunber literals, as
explained in Section 2.
212. 3E-16
-22.454
2. 0E+4

3.3.5 BYTE and WORD

The BYTE data type uses a single byte. It is conpatible in
expressions and assignment statenents with the CHAR and | NTEGER
types. BYTE accepts any bit pattern and is useful for handling

control characters, and perform ng character arithnetic.

The WORD data type uses a native nmachine word, except in the 8
bit inplementation where it uses two bytes. Al arithnetic and
conpari son operations on WORD expressions are unsigned, whereas
operations using | NTEGER are signed.

3.3.6 User-defined Ordinal Types

You can define two kinds of ordinal types: enunerated types
and subranges.

An enunerated type is one in which you explicitly list each

value in the type. The nanes for the values nust be valid
Pascal / M+ identifiers. The following exanple shows sone type
definitions for enunerated types.
TYPE
COLOR = (RED, YELLOW BLUE, GREEN, ORANGE);
SCORE = (LOST, TIED, WON);
SKILL = (BEG NNER, NOVI CE, ADVANCED, EXPERT, W ZARD);

3-5

Pascal / M+ Ref erence Manual 3.3 Sinple Types

The ordinal value of an enumerated-type constant is the sanme as
its position in the type definition. The first constant has an
ordinal value of 0. In the exanple above, YELLOW has an ordinal
value of 1, and EXPERT has an ordi nal val ue of 3.

A subrange is a set of values ranging between two specified
val ues of some previously defined ordinal type. The following are
exanpl es of subrange definitions.

TYPE
GO0oD = ADVANCED .. W ZARD,
PRI MARY = RED .. BLUE;
NUMERAL = ‘0’ .. "9';
INDEX =1 .. 100;

Bot h bounds in a subrange definition nust be either literals or
naned constants of the sane ordinal type. The left constant nust
have an ordi nal value |ess than that of the right constant.

3.3.7 Pointers

A pointer is a variable whose value is the address of a
dynamically allocated variable of some specific type. To define a
poi nter type, use the pointer character, », followed by a type nane,
as in the foll ow ng exanpl es.

TYPE
I NTPT : " NTEGER;
LI NK : A"TREE_NODE;
NAMEPTR : ~STRI NG

You can assign the value NIL to any type pointer to represent
a null pointer.

To reference the object whose address a pointer contains,
follow the pointer's name with the ~ character, as in the follow ng
exanpl es.

NEVWREC © = NEXTH,;
NAMEA = "ALPHA FI VE' ;
EMPLOYEE". AGE : = 32;

If the conpiler is using strong type checking, two pointers
must be of the sane type to be conpatible. When the conpiler is
usi ng weak type checking, all pointer types are conpatible, allow ng
you to treat the sanme object as nore than one data type.

Note: if you use the @ conpiler command-line option, the
N

conpi ler accepts the character @ as a substitute for the
character.

3-6

Pascal / M+ Ref erence Manual 3.4 Structured Types
3.4 Structured Types

Structured types are a conposite of other types. A sinple-type
variable only has one value, whereas a structure-type variable can
be a collection of values of different types. Arrays, records,
sets, and files are the major kinds of structured types. Section 7
di scusses fil etypes.

When determining the internal |ayout of a structured type, the
conpiler sonetines |eaves gaps between elenents, putting the
el ements at word boundaries to speed up access. If you want to
sacrifice speed for space, you can use the reserved word PACKED. In
the context of a structure type definition, the word PACKED causes
the conpiler to elininate any wasted space.

3.4.1 Arrays

An array is a collection of a fixed nunber of elenents of the
sane type. Arrays can have any type elenment, including other
structured types. An array type definition has the general fornmat:

ARRAY [<i ndex type> {, <index type>}] OF <elenment type>

The <index type> can be any subrange type except LONG NT. You
can either use the nane for a subrange type, or specify the bounds
explicitly. For the <elenent type> you can either use a type nane,
or define the type right in the array definition. The follow ng are
exanpl es of array type definitions.

TYPE
LIST = ARRAY [FIRST .. LAST] OF STRING
GRIDL = ARRAY [1 .. 20] OF ARRAY [1 .. 20] OF I NTEGER,
GRID2 = ARRAY [1 .. 20, 1 .. 20] OF INTEGER
TABLE = PACKED ARRAY [| NDEX] OF PERPT;

Note that the definitions for GRIDL and CRID2 are functionally
i denti cal .

You can use the reserved word PACKED in an array definition of
the form

PACKED ARRAY [1 .. n] OF CHAR

In this context, the word PACKED causes the conpiler to treat
the array as a static string.

Wen accessing an array, the array's nane by itself
represents the entire array; the nane followed by an index
references an individual elenent in the array, as in the followng
exanpl e.

Pascal / M+ Ref erence Manual 3.4 Structured Types
PROCEDURE WORTHLESS;

CONST
FIRST = 1;
LAST = 20;

TYPE
LI ST = ARRAY [I..20] OF STRING

VAR
| . | NTEGER;
NAMVESA : LI ST;
NAVESB : LI ST,

BEG N
FOR I := FIRST TO LAST DO
NAMESA[1] ="' ";
NAMESB : = NAMESA
END;

3.4.2 Strings

The predefined type STRINGis |like a packed array of characters
in which byte 0 contains the dynanmic length of the string and bytes
1 through n contain the characters. Wen you declare a string, the
conpi ler allocates a predeterm ned nunmber of bytes for the string.
The default length is 80, but you can specify from 1l to 255 bytes.
The dynamic length is the length of the string actually in use, not
the total available space. To specify the maximum length of a
string, put the length in square brackets, as in the follow ng
exanpl e:

VAR
TI TLE : STRI NG 16]
LI NE . STRING
LONGLI NE : STRINQ 255) ;

You can assign a string of any length to a string variable.
You can also assign a CHAR value to a string. The | ength byte of
the string variable reflects the new dynamic |ength, and the extra
bytes are undefined. However, if the assigned string is longer than
the maximum length of the string variable, errors can occur.
Assigning individual characters to a string does not change the
decl ared | engt h.

To access individual characters in a string, you index the
string like an array.

The predefined function LENGTH returns the dynamc |length of a
string. Section 6 describes several other predefined string
routines.

Pascal / M+ Ref erence Manual 3.4 Structured Types

Pascal / M+ supports static strings, whhich have a preset,
static length. To declare a static string, define it as:

PACKED ARRAY [I..n] OF CHAR
where n is an integer constant in the range 1 to 255.

Keep in mind the foll owi ng points about static strings:

?? You can assign a string literal to a static string if the
string literal is exactly the same length as the static
string.

?

?? You can conpare static strings to string literals of exactly
the same | ength.

5

?? You can wite static strings to TEXT files using the WRITE

and WRI TELN pr ocedur es.

Pascal / M+ stores string literals as dynamic strings, and the
string routines work only with dynam c strings.

3.4.3 Sets

A set is a structured type that contains elenments of the sane
base type. Unli ke arrays or records, in which each elenment has a
value, the elenents of a set are only significant in their presence
or absence fromthe set. Each elenment in a set has a corresponding
bit. If an elenment is in a set, its bit is set, if the elenent is
not in the set, its bit is 0.

Set operations are the standard mathenatical operations like
uni on, intersection, and difference. Section 4 describes the set
operators and expressions.

A set type definition has the general form
SET OF <base type>

In Pascal / M+, the <base type> can be any ordinal type. The
ordi nal value of the upper and | ower bounds of the base type nust be
in the range 0 to 255. A set-type variable always takes up 32
byt es.

Listing 3-1 is an exanple programthat uses sets.

3-9

Pascal / M+ Ref erence Manual 3.4 Structured Types

PROGRAM USE_SETS;

VAR
LONER, UPPER : SET OF CHAR
DG T, DELIMT : SET OF CHAR
I, NUMLETS, NUMDIGS : | NTEGER;
LINE : STRING

BEG N
LONER :=['a" .. "2"];
UPPER:=['A’. VAN
DAT : :[‘O'. '9'];
DELIMT : T A I
NUMLETS : = O;
NUMDI GS : :O,
READLN(LI NE) ;
FOR 1 := 1 TO LENGTH(LI NE) DO
IF LINE[I] IN (LOAER + UPPER) THEN
BEG N
NUMLETS : = I\UI\/LETS+1;
IF LINE[IL IN LOAER THEN (* MAKE UPPERCASE *)
LINE[I L : CHR(ORD(LINE[I]) - 32)
END
ELSE

IF LINE[1] INDGT THEN
NUMDI GS : = NUMDI GS +1
ELSE
I'F LINE[1] IN DELIM T THEN
LINE[[] := **
END.

Listing 3-1. Program Using Sets

3.4.4 Records

A record is a collection of distinct elements called fields,
each of which can be of any type. Records are useful for describing
logically related data itens that are of different types.

Pascal / M+ records can either be variant, or nonvariant. Any
two nonvariant records of a particular type always have the sane
internal structure whereas variant records can vary in internal

structure.

The type definition for a nonvariant record has the general
form

<field list>: <field type> {;
<field list>: <field type>}

3-10

Pascal / M+ Ref erence Manual 3.4 Structured Types

The <field list> consists of one or nore identifiers separated

by conmas. Wthin any given record, each field name nust be a
uni que identifier. CQutside the record, the field nanes can be used
for different identifiers. Therefore, two different record types

can have identical field nanes.

The following is an exanple of a nonvariant record
definition:

TYPE
PART = RECORD
NAME, SOURCE : STRINJ 10];
ID NUMBER : | NTEGER
PRI CE . REAL
END;

VAR
PARTLI ST : ARRAY [NUMPARTS] OF PART;
NEWPART : PART,

Notice that the field definitions have the sane format as variable
decl arati ons.

You can reference each elenent in record by its field nanme
using the follow ng form

<record nane>. <field nanme>

where the dot operator connects the record nanme and field name. For
exanpl e,

NEWPART. PRI CE : = 29. 95;
WRI TELN(PARTLI ST[1] . NAVE) ;

A variant record is a record whose internal structure varies
dependi ng on how you use the record. That is, you can have two or
nore records of the same type that have different types of fields.

The variant part of the record s definition acts |like a CASE
statenent (see Section 5.2) because each option in the definition is
| abeled with one or nobre values, and the only option whose | abel
mat ches the value of a selector is used.

The variant part of a record nmust follow the nonvariant part,
and a record can have only one variant part. However, a field
within the variant can also be a variant record, so it is possible
to nest variants.

The type definition for a variant record has the general form

RECORD
{<field nane list>: <field type>;}
CASE <case sel ector> OF
<case label list>: (<field list>) {;
<case label list>: (<field list>) }

where the <field name list> is identical in form to the list of
fields in a record definition and can have a variant part. |If a
3-11

Pascal / M+ Ref erence Manual 3.4 Structured Types
field has a variant part, it nmust be the last field in the list. To
indicate that a variant has no fields, use an enpty parentheses
pair.

The <case selector> is either a <tag field> or sinply a type

nane. In either case, the type nust be sone previously defined
sinple (scalar) type. The case l|labels are constants of the type of
the selector. If there are nore than one, separate them wth
commas.

If the <case selector>is a <tag field> it has the form
<field name> : <type nane>

and is one of the regular fields in the record. The field list, or
variant with the correct case label, is selected depending on the
value of the <tag field>.

The foll owi ng exanpl e shows a variant record definition:

RECORD
NAME: RECORD
FIRST : STRI N{d 15]
MD : CHAR
LAST : STRIN{ 15]
END;
AGE, BIRTH : | NTEGER;
SEX . CHAR
CASE EMPLOYED : BOOLEAN OF (* START OF VARI ANT PART *)
FALSE : ();
TRUE : (SALARY : REAL;
CASE EMP_BY : EMP_TYPE OF
SELF : (YEARS : |NTEGER);
Vv, BUSI : (TITLE : STRING 12];
NUMYRS : | NTEGER)

END;

Both the nmin variant and the nested variant in the preceding
exanple have a field that controls which variant applies. It is
al so possible to use a type nane to control the variant, as in the
followi ng exanple. This kind of variant is called a free variant.

RECORD
CASE | NTEGER OF
1: (A B C D: CHAR);
2 (X Y : I NTEGER) ;
3: (Z : LONG NT)
END;

3-12

Pascal / M+ Ref erence Manual 3.4 Structured Types

Every field name in a record nust be distinct, even if the
fields are in different variants. Surround each variant with
parentheses; if there are no fields in the variant for a given
| abel , use enpty parentheses, ().

End of Section 3

Section 4
Operators and Expressions

Pascal / M+ provides a large assortment of operators for
building expressions in several general categories. Table 4-1
briefly describes each of the operators.

Pascal / M+ eval uates every expression to result in a val ue of
sone specific type. The type of the result depends on the operator
and the kind of operands in the expression.

The sinplest expression is a single operand, which can be a

constant, variable, function call, or sub-expression. In an
expression with nmore than one operator, the precedence of the
operators determ nes how Pascal/MI+ evaluates the expression. | f

two or nore operators have the sanme precedence, they are eval uated
fromleft to right unless you use parentheses to override the nornal
order of evaluation. For exanple,

4 - 3+1=2 wher eas 4 - (3+1) =0
Table 4-1. Summary of Pascal / M+ Operators
Qperator | Operation | Operands | Result | Precedence
Arithmetic
+ unary i nteger or sane as 3rd
identity r eal operand hi ghest
+ addi tion, integer,real same as 3rd
or pointer operand hi ghest
- unary sign i nteger or same as 3rd
i nversion r eal operand hi ghest
- subtracti on, i nteger or same as 3rd
r eal operand hi ghest
* multiplicatio integer or integer 2nd
n real hi ghest
div i nt eger i nt eger integer 2nd
di vi si on hi ghest
/ real i nteger or
di vi si on real real 2nd
hi ghest
nod nodul us i nteger integer 2nd
hi ghest

Pascal / MT+ Ref erence Manua

Precedence

4 Qperators and

Table 4-1. (continued)
Qperator | Operation | oper and | Resul t [Precedence
Rel ati onal
= equality scal ar, string
set, pointer
record bool ean | onest
<> inequality scal ar,
string set,
poi nt er bool ean | owest
record
< | ess than scal ar or
> greater than string bool ean | onest
<= | ess or equal scal ar or bool ean | owest
string
or
set inclusion set bool ean | onest
>= greater or scal ar or
equal string bool ean | owest
or
set inclusion (see 4.4) bool ean | owest
I'N set nenbership (see 4.4) bool ean | owest
Bool ean
NOT negati on bool ean bool ean hi ghest
oRrR di sj unction bool ean bool ean 3rd
hi ghest
AND conj unction bool ean bool ean 2nd
hi ghest
Logi cal
? - one’ s conpl e- i ntegers and same as
or \ nent of operand pointers oper and hi ghest
I or | ogi cal OR i ntegers and sane as
| poi nters oper and 3rd
hi ghest
& | ogi cal AND i ntegers and sane as
poi nters oper and 2nd
hi ghest
Set
+ uni on set set 3rd

hi ghest

set difference set set 3rd

hi ghest
intersection set set 3rd

hi ghest

Pascal / M+ Ref erence Manual 4.1 Arithmetic Expressions
4.1 Arithnetic Expressions

Pascal / MI'+ has operators for addi tion, subtraction,
mul tiplication, and division. There is no operator f or
exponenti ati on.

The arithnetic operators work with integers and reals, and
you can mx integers with reals. |If both operands are integers, the
result is an integer, except with division. Q herwi se, the result
is areal. A long integer mxed with a regular integer produces a
| ong integer. In an expression, the conpiler treats an integer
subrange type like an integer.

Be careful wth nultiplying large nunbers, particularly
integers. The results of overflows are unpredictable.

The real -nunmber division operator, /, always produces a real-

nunber result. For integer division, use the DIV and MOD operators.
DIV gives the integer quotient, and MOD gives the renainder. For
exanpl e,

6/ 3=20 (* REAL RESULT *)

6 DIV3 =2 (* INTEGER RESULT *)

44 DIV 7 =6

44 MDD 7 = 2

-3 MD 2 =-1

DIV and MOD work with regular and | ong integers.
4.2 Bool ean Expressions
Bool ean expressions have either the Boolean value TRUE or

FALSE. Two ki nds of operators form Bool ean expressions:

?? Relational operators produce Bool ean results, but take operands
of many different types.

N

Bool ean operators work only w th Bool ean operands.

The relational operators for equality and inequality work
with any type except files. The operators that test for ordering
only work with sinple types and strings. Sone relational operators
al so have special meanings in the context of set expressions, which
are described in Section 4.4.

All the relational operators have the sane neaning that they

do in standard algebraic equations. When testing structures for
equality, both structures must have identical contents to be equal.

4-3

Pascal / MT+ Ref erence Manual 4.2 Bool ean Expressions
4.2 Bool ean Expressions

Leading and trailing blanks are significant. For exanple,

"TH' S ''<>'TH S and CXXZZY <>t XXZzZY

When testing strings for ordering, the evaluator checks
character by character, fromleft to right until it either reaches
the end of a string or finds two characters that do not match. The
ordering is based on the ASCI|I values of the characters. For
exanpl e,

“AAAB' > ' AAAAAAAAA

The ordering for enunerated types is based on the ordinal
val ues of the itens. For exanple,

FALSE < TRUE
‘¢’ > ‘C

Remenber that relational operators have the | owest precedence.
You often have to use parentheses around relational expressions to
make them eval uate the way you want. Failure to do so is a comon
cause of conpilation errors. For exanple, the conpiler interprets
the expression

X<3 ORX>15
as

X< (3 ORX >15

which is an invalid expression. The proper way to wite the
expression is

(X <3) OR (X > 15)

The Bool ean operators AND, OR, and NOT have the sane effect as
in standard Bool ean al gebra. Table 4-2 shows the results from
Bool ean operations. T and F stand for TRUE and FALSE.

Tabl e 4-2. Bool ean QOperations

A [B | AANDB | AORB | NOTA
T T T T F
T F F T F
F T F T T
F F F F T

Pascal / MT+ Ref erence Manual 4.3 Logi cal Expressions

4.3 Logi cal Expressions

Logi cal expressions perform bitw se | ogical operations on
sinple data itens. Table 4-3 shows the three |ogical operators.

Table 4-3. Logi cal Operators
Qper at or [Use
& | ogi cal AND
I'(or |) | ogi cal OR
~ (or ? or\) one' s conpl enent NOT

The foll owi ng exanpl e uses the | ogical operators to invert
four bits in a variable.

MDBITS := ~(FLAGS & $00F0); (* 1 SOLATE AND | NVERT *)
FLAGS = FLAGS & $FFOF; (* MASK QUT BI TS *)
FLAGS = FLAGS ! MDBITS; (* PUT IN NEWFIELD *)

4.4 Set Expressions

There are two classes of operators for sets. One class of
operator forms relational expressions that produce Bool ean results.
The other class of operator forns expressions that build sets.

To form valid expressions, the sets nust be of conpatible
types. Sets are of conmpatible types if either they are the same

type or if the base types for the sets are assignnent conpatible,
as described in Section 5.

The set constructor,
[<member |ist>]

specifies the values of a set. The <nenber I|ist> can be any
conbi nation of individual elements and closed intervals, separated
by commas. The follow ng exanpl es denonstrate the set constructor

[1, 3, 5, 7..20, 22, 34]
[1..10, x..y, i+]

[89, 3, 54, 4..13]

[T (* THHS IS THE EMPTY SET *)

4-5

Pascal / MT+ Ref erence Manual 4.4 Set Expressions

have

The nenbers do not have to be in any order, and they do not
to be constants. You can specify individual menbers and

intervals with variables or expressions. Al of the nenbers |isted

nmust
hand

be in the declared range of values for the set, and the |eft-
bound of an interval nust not be greater than the right-hand

bound.

7
”
7

SEERENAE

3'\)

There are three operators that build sets fromother sets

The + operator produces the union of two sets.

The * operator produces the intersection of two sets.

The - operator produces a set equal to the set on the left,
mnus all the elenents that are in the set on the right.

The foll owi ng exanpl es denonstrate these set operators:

[RED, YELLOW BLUE] * [RED, GREEN] = [RED|

[1..20] + [3, 5, 11..34] = [I..34]
LETTERS := ['A..'2'];
CLOSED :=['A, 'B, 'D, ‘O..'R];

OPENED LETTERS - CLOSED;

There are five relational operators that operate on sets:

The IN operator tests for nenbership of an individual itemin
a set. The itemon the left nmust be of a conpatible type with
the base type of the set.

The = operator tests for equality of two sets. Both sets nust
have exactly the sane nenbers.

The <> operator tests for inequality.

The <= operator tests for inclusion of the set on the left in
the set on the right.

The >= operator tests for inclusion of the set on the right in
the set on the left.

Listing 4-1 denonstrates several of the set operators

Pascal / MT+ Ref erence Manual 4.4 Set Expressions

PROCEDURE CHECKLI NE (ST : STRING ;

VAR
CH : CHAR
I I NTEGER
ALLOVED, FOUND : SET OF CHAR,

BEG N
ALLOED : =
FOUND : = []

FOR | 1 TO LENGTH(ST) DO
FOUND : = FOUND + [ST[I]];

| F FOUND = ALLOAED THEN
WRI TELN (' ALL USED, NO EXTRAS)

['A..'Z, "0..79, "7, "G

ELSE
| F FOUND <= ALLOAED THEN
BEG N
WRI TELN (' NO EXTRA CHARACTERS I N STRING BUT'):
WRI TELN (' THE FOLLOW NG CHARACTERS ARE M SSING ') ;
FOR CH : = CHR(32) TO CHR(126) DO
IF (CH IN ALLOWED) AND NOT (CH I N FOUND) THEN
WRI TELN (CH)
END
ELSE
| F FOUND >= ALLOWED THEN
BEG N
WRI TELN (' ALL CHARACTERS USED, BUT SOME EXTRA: ');
FOR CH : = CHR(32) TO CHR(126) DO
I'F (CH IN FOUND) AND NOT (CH I N ALLOAED) THEN
WRI TELN (CH)
END
ELSE
WRI TELN (' NOT EVEN | N THE BALLPARK! ")
END;

Listing 4-1. Set Expressions

End of Section 4

Section 5
Statements

This section describes the syntax for each of the Pascal/Mr+
statenments in al phabetical order. Anywhere in a syntax description
t hat

<st at enment >
appears, you can use one of the statements described in this
section, or you can use a procedure call or conpound statement. A
conpound statement is zero or nore statements enclosed by a BEG N
and an END.
5.1 The Assignnent Statenent

An assignnment statenent assigns a value to a variable. The
general formis

<vari abl e> : = <expression>

The assignment statenent eval uates the expression on the right

and gives that value to the variable on the left. The statenent
does not change the value of the variable until it evaluates the
whol e expression. |If you use the sane variable on both sides of the

assi gnment operator, the statenent uses the old value in the
expr essi on.

The expression assigned can be of any type. The left and right
sides of the assignnent statenent nust be of the same type, with the
foll ow ng exceptions:

?? If the variable is REAL the right can be an I NTEGER or | NTEGER
subrange expression

N

The variable's type can be a subrange of the expression as
Il ong as the assigned value is in the range of the variable.

N

You can assign different set types if all nembers of the right
set can be nmenbers of the left set.

N

You can assign expressions of type CHAR to variabl es of type
STRI NG or BYTE.

3

You cannot assign files or structures containing files.

Pascal / M+ Ref erence Manual 5.1 Assignnent Statenent

Exanpl es:
COUNT := COUNT + 1;

LETTER : = ["a".."z", "A.."Z];

LI ST[I]”. VALUE : = 163000. O;

5.2 The CASE St at enent

The CASE statenent is a nultiple-path branch. The general
formis

CASE <expressi on> OF

{ <constant> {, <constant>} : <statenent> ; }
END

or

CASE <expressi on> OF

{ <constant> {, <constant> } : <statenent> ;}
ELSE

<st at ement >
END

The CASE statenment evaluates the <expression> and executes
the <statenent> that is |labeled with the matching value. If no
| abel matches, the <statement> after the ELSE executes. |If there is
no match and there is no ELSE part, the program flow continues at
the next statenent after the CASE statenent.

The constants |abeling the selectable statenments nust be the
sane type as the expression, which can be any ordinal type. The
same val ue cannot |abel nore than one path.

The CASE labels are different from declared |abels. The
scope of a CASE | abel is confined to the body of the CASE statenent.
Note al so that you cannot reference CASE | abels in a GOTO statenent.

Pascal / MT+ Ref erence NManual 5.2 The CASE St at enent

Exanpl es:
CASE CH OF
‘a’, ‘A WRITELN ('A);
‘q", ‘Q : WRITELN (‘Q); (* SEM COLON OPTI ONAL *)
ELSE
VWRI TELN (' NOT A OR Q)
END

CASE COWPARE(N[1], N 1+]1) OF

LESS : : (* DO NOTH NG *)
SAME : DUPLI CATES : = DUPLI CATES + 1;
GREATER :

BEG N

SW TCHED : = SW TCHED + 1;
| NTERCHANGE(N[1], N1+ 1)
END
END

5.3 The Enpty Statenent

A senmicolon by itself is a valid Pascal/ M+ statement called
the enpty statenent. However, if you misplace a sem colon, you can
end up with a program that acts differently than you expect. For
exanple, in the follow ng program fragnent, the sem colon after the
reserved word DO causes an infinite |oop. Because the semcolon is
m splaced, the only statement in the WHLE loop is the enpty
statenent, and the control variable never changes.

VWH LE LIST[I] <> * DG (* M SPLACED SEM COLON *)
BEG N
WRI TELN (LIST[1]);
I = + 1
END;
The correct form is to omt the senmicolon after DO I'n
general, it 1is incorrect to put a senicolon before a BEGN

st at enent .
5.4 The FOR St at enent

The FOR statenent repeats an action a specified nunmber of
times. The general formis

FOR <control variable> := <expression> TO <expressi on> DO
<st at enent >

or

FOR <control variable> : = <expressi on> DOANTO <expr essi on> DO
<st at ement >

5-3

Pascal / MT+ Ref er ence Manual 5.4 The FOR St at enent

The FOR statenent assigns a succession of values to the
<control variable> and executes the statenent body once for each
value of the variable. In FOR TO statenents, the value of the
<control variable> increnents by one after each repetition.

In FOR DOMWTO statenents, the value of the <control variable>
decrenents by one after each repetition. Note that the value of the
<control variable> is undefined after the last repetition.

The expressions that control the FOR statenent nust be of the
same ordinal type as the <control variable>. In the FOR TO
statement, if the first <expression> is greater than the second
<expression> the statement body does not execute. The sane thing
happens in a FOR DOANTO statenment if the first <expression> is |ess
than the second.

The FOR statenent evaluates both expressions and stores the
val ues before it executes the statenent body. It evaluates the
first <expression> before it evaluates the second <expression>. | f
the first <expression> contains a function reference that changes
the value of a variable in the second <expression> the new value is
the one that applies. Eval uati ng the second <expression> has no
effect on the first <expression>.

The <control variable> nust be a sinple (scalar) variable; it
cannot be a pointer-referenced variable or an elenent of a
structure. The scope of the <control variable> nmust be local to the
bl ock containing the FOR statement, and its value nust not change
i nside the statenent body.

Exanpl es:
FORCH:=* * TO'z'" DO
WRI TELN(ORD(CH): 3, * *, CH)
FOR | := LENGTH(LI NE) DOWNTO 1 DO

WRI TE(LINE[1])

FOR X := LEFT TO R GHT DO
FOR Y : = BOTTOM TO TOP DO
IF GRIDIX, Y] IN[**, “+. “:*] THEN
BEG N
STORELOC(X, Y);
CHECKPATTERN(X, Y)
END

Pascal / MT+ Ref er ence Manual 5.5 The GOTO St at enent
5.5 The GOTO St at enent

The GOTO statenent transfers programcontrol to a | abel ed
statenent. The general formis

GOTO <l abel >

The | abel can be any positive integer literal of one to four
digits. You nust declare the label in the |abel declaration section
of the block that includes both the GOTO statenment and the |abeled
stat ement .

The | abel ed statenent nust be in the sanme block as the GOTO
statenent or at a higher nesting |evel. The Pascal / M+ run-tinme
system can transfer <control out of routines and structures,
i ncluding deeply nested recursive routines, to any higher |evel that
nmeets the scope requirements for the |abel. However, transferring
control into procedures, functions, or structured statenents
produces unpredictable results.

Exanpl es:

PROGRAM USE_GOTG,

LABEL

9999:
CONST

MAG C WORD = ' QUI T
VAR

INP : STRING

PROCEDURE BAI LOUT (INST : STRING ;
BEG N
I F I NST <> MAG C_ WORD THEN
VWRI TELN(* NO, THAT' 'S NOT RIGHT')

ELSE
GOTO 9999
END;
BEG N
WHI LE TRUE DO (* INFINITE LOOP *)
BEG N
WRI TELN(' WHAT |'S THE MAGI C WORD?")
READLN(| NP) ;
BAI LOUT(| NP)
END;
9999
END.

5-5

Pascal /' M+ Ref erence nanual 5.6 The | F Statenent

5.6 The | F Statenent

The | F statement controls program fl ow based on the val ue of
a Bool ean expression. The general formis

| F <Bool ean expressi on> THEN
<st at enment >

or
| F <Bool ean expressi on> THEN
<st at ement >
ELSE
<st at ement >
If the <Boolean expression> is TRUE, the first statenent
executes. |f the <Bool ean expression> is FALSE and there is an ELSE
part, the second statement executes. |f the <Bool ean expression> is

FALSE and there is no ELSE part, the program flow continues at the
next statenent.

In a statenent of the form
| F <exp> THEN
| F <exp> THEN
<st at enent >
ELSE
<st at enent >

the conpiler associates the ELSE part with the closest |IF

5-6

Pascal / MT+ Ref er ence Manual 5.6 The I F Statenent

Exanpl es:

| F HELP_REQUEST THEN
BEG N
HELP_DI SP;
GET_LEVEL (LEV);
MESG DI SP(LEV)
END

| F SCORE < 60 THEN

GRADE :='F
ELSE
| F SCORE < 70 THEN
GRADE :='D
ELSE
I F SCORE < 80 THEN
GRADE :='C
ELSE
| F SCORE < 90 THEN
GRADE : = 'B
ELSE
GRADE : = "A

5.7 The REPEAT St at enent

The REPEAT statenment executes a group of statenents
repeatedly until the exit condition is true. The general formis

REPEAT
<statement > {;
<statenent > }

UNTI L <Bool ean expressi on>

The REPEAT statenent executes the statement body before it
eval uates the <Boolean expression> in the UNTIL part. If the
<Bool ean expression> is TRUE, the REPEAT statenent is finished.
Note that if the controlling condition does not change in the
statement body, the statement |oops indefinitely.

Notice that a BEG N-END pair is not required around the
st at enent body.

Exanpl es:

REPEAT
READLN(| NP) ;
WRI TELN (F, INP);
LI NECNT : = LI NECNT + 1
UNTIL INP = *.°

Pascal / MT+ Ref er ence Manual 5.8 The WH LE
St at enrent

5.8 The WHI LE St at enent

The WHI LE statenent repeatedly executes its statenent body, as
long as the controlling condition is true. The general formis

WH LE <Bool ean expressi on> DO
<st at ement >

The WH LE statenent eval uates the <Bool ean expression> before
it executes the statenent body. If the <Boolean expression> is
initially FALSE, the statenent body does not execute. As long as
the <Bool ean expression> is TRUE, the statenent body executes.

Exanpl es:
VWH LE NOT EOF(FN) DO
BEG N
READLN(FN, 1 NP);
SCAN(| NP)
END

WHI LE (1 < LENGTH(ST)) AND NOT FOUND DO
BEG N
FOUND : = ST[I) = ‘.’;
I i=1 +1
END

5.9 The WTH St at enent

The WTH statenent creates a context for referencing record
fields by their individual names. The general formis

W TH <record variable> {, <record variable>} DO
<st at erment >

Inside the statenent body, you can reference any field of a
specified <record variable> by the field s nane. For exanple, the
W TH st at enent,

W TH EMPLOYEE DO

BEG N
NANME = 'John Doe';
AGE = 47,
TITLE : = 'Progranmmer |V
END

is equivalent to the three assignment statenents,

"John Doe';

47,

" Programer |V
5-8

EMPLOYEE. NAME
EMPLOYEE. AGE :
EMPLOYEE. Tl TLE :

Pascal / MT+ Ref er ence Manual 5.9 The WTH
St at enrent

A WTH statenent having nore than one <record variable> is
equivalent to a series of nested WTH statements with one <record
variabl e> specified at each |evel. A <record variable> can be a
field in a previously specified record. For exanple, the single
W TH st at enent :

WTH R1, R2, R3 DO
<st at enent >

i s equivalent to:
WTH R1 DO
WTH R2 DO

WTH R3 DO
<st at enent >

If you specify nore than one record, and if two records have a
field with the same name, the conpiler associates the field nane
with the innernpbst <record vari abl e>.

Exanpl e:

PROGRAM SHOW W TH;

TYPE
FULLNAME = RECORD
FI RST, LAST : STRI NG 15]
M DDLE : CHAR
END;
VEMBER = RECORD
NANVE : FULLNAME;
JO NED : STRIN(G 8] ;
I D . | NTEGER
END;
VAR
NEWVEM : MEMBER,
BEG N
W TH NEWWEM NAME DO
BEG N
FIRST := '"JOHN ;
M DDLE : = 'Q;
LAST := 'PUBLIC ;
JO NED : = 02/ 27/53";
ID:=0
END
END.

End of Section 5

5-9

Section 6
Procedures and Functions

Pascal / M+ is a block-structured, procedure-oriented |anguage.
It contains all the necessary control structures you need to wite

under st andabl e, and nmai ntai nabl e code. The underlying concept of
any procedural |anguage is designing the program as a series of
small, logically distinct units that are easy to code, debug, and
mai nt ai n.

Procedures and functions are essential building blocks in a
structured programming | anguage. A procedure is like a
paraneterized statement, and a function is like a paraneterized
expr essi on.

In Pascal /MI+, you call (invoke) a procedure by sinply using

its name. That is, a procedure call is the procedure nane, foll owed
by the required paraneters. A procedure call is like any valid
st at ement . Anywhere that you can use a statement, you can use a

procedure call.

You can put a function reference anywhere that you can put an

expr essi on. The function reference is part of the process of
eval uating the expression. A function reference, like a procedure
call, is just the function nane, followed by the required

par anmet er s.

Pascal / M+ functions and procedures can be recursive. They can
contain calls to thenselves. They can also be nutually recursive.
Two procedures or functions can reference each other.

Pascal / M+ al so supports a special type of procedure called an
interrupt procedure. See your progranmer's guide for details.

In the rest of this section, the word procedure refers to both
functions and procedures, unless the context mnmakes it exclude
functions.

Pascal / MT+ Ref er ence Manual 6.1 Procedure
Definitions

6.1 Procedure Definitions

A procedure definition, like a program has a heading foll owed
by a declaration section and a statenent body. The following is an
exanmpl e of a procedure definition.

PROCEDURE | NTERCHANGE(VAR |, J : | NTECER);

VAR
TEMP : | NTEGER;

BEG N

TEMP = 1;

I .
J

END;

A function definition is like a procedure definition, with the
foll owi ng additions:

?? You nust specify the data type for the function.
?? At least once in the statenment body, you nust have a speci al
assi gnment statenment that returns the function val ue.

The data type for a function nust be a sinple or string type.
Put the type nane after a colon at the end of the function heading.

To specify the value that a function returns, use an assignnent
statement with the function nane on the left side. You can put nore
than one of the special assignment statenents in the function body,
in which case the last value assigned before the function returns
control is the value the function returns. The following is an
exanpl e of a function definition.

FUNCTION M N (L, R : INTEGER) : | NTECER;

BEG N

IF L < R THEN
MN::=L
ELSE
MN:= R

END;

If you have to reference a procedure before its definition, use
a FORWARD decl aration, that has the followi ng form

<procedure headi ng> ; FORWARD;

The definition of the procedure, later in the program does not
have the paranmeter list in the heading. Listing 6-1 is an exanple
of a program with a FORWARD decl arati on. The two functions are

mutual |y recursive.

6-2

Pascal / MT+ Ref er ence Manual 6.1 Procedure Definitions

PROGRAM RECURSE;

VAR
I I NTEGER

FUNCTION G (X : INTEGER) : | NTEGER, FORWARD;

FUNCTION P (X : INTEGER) : | NTEGER;

BEG N
IF X < 2 THEN
F:=1
ELSE
F:=FX-1) + X2
END;
FUNCTION G (* NO PARAMETER LI ST OR FUNCTI ON TYPE *)
BEG N
IF X < 2 THEN
G:=1
ELSE
G:= (X*X) + GF(X1) MD X)
END;
BEG N (* MAIN PROGRAM *)
FOR1 :=1 TO 10 DO
WRITELN (“F(', 1:2,) =", F(1))
END.
Listing 6-1. FORWARD Decl arati ons
6.2 Par anet ers

The paranmeters in the procedure heading are called fornal

par anet ers. The parameters in the procedure call are called
actual paraneters. There are two types of formal parameters in
Pascal / MI'+: value and variabl e paraneters. The difference between
the two is the way that the parameters are passed at run-tine.

A value parameter is like a local variable in the procedure.
During a procedure call, the value of the actual paraneter passes
into the procedure. |If you change the value of the formal paraneter
inside the procedure body, it does not effect the value of the
actual parameter. In the procedure call, the actual paraneter can
be any expression whose type is conpatible with the fornal
par anet er.

Changing a variable paraneter inside a procedure body changes
the actual paraneter. During a procedure call, the address of the
formal paraneter, instead of its value, passes into the procedure.
The actual parameter in the procedure call nust be a variable whose
type is conpatible with the formal parameter. A variable paraneter
cannot be a constant or an element of a packed structure. A file
parameter must be a variabl e paraneter.

6-3

Pascal / MT+ Ref erence Manual 6.2
Par anet ers

The following exanple denonstrates the difference between
vari able and val ue paraneters. Li sting 6-2a shows the program and
Li sting 6-2b shows the output fromthe program

PROGRAM VALVAR,

VAR
XVAL, XVAR : | NTEGER

PROCEDURE MUDDLE (MAL : | NTEGER, VAR MWVAR : | NTEGER);

BEG N (* MJDDLE *)

MVAL := 11;

MWAR : = 33;

WRI TELN(‘ I N MUDDLE AT END “, WAL, WAR
END;
BEG N (* MAIN PROGRAM *)

XVAL : = 1;

XVAR : = 2;

WRI TELN(‘ I N MAI N BEFORE CALL “, XVAL, XVAR);

MUDDLE (XVAL, XVAR) ;

WRI TELN(* I N MAI N AFTER CALL “, XVAL, XVAR
END.

Li sting 6-2a. Paraneter Passing Program

IN MAIN BEFORE CALL 1 2
I'N MUDDLE AT END 11 33
IN MAIN AFTER CALL 1 33

Listing 6-2b. CQutput from VALVAR Program

To specify that a paraneter is a variable paraneter, place the
word VAR in the paraneter declaration. The VAR applies to all of
the paraneters grouped together wth one type nane. In the
foll owi ng procedure heading,

PROCEDURE X (VAR I, J, K: INTEGER M N : |NTEGER);

I, J, and K are all variable paraneters, and M and N are val ue
par aneters.

Besi des passing values and variables into procedures, you can
also pass procedures and functions. The declaration for a
procedural paraneter has the same form as a procedure heading. The
paraneter nanes in the procedural paraneter declaration have no
scope outside of the declaration. The formal nanme for the procedure
is the nane that the main procedure uses in the statenent body.

6-4

Pascal / MT+ Ref erence Manual 6.2 Paraneters
A procedure or function passed as a paraneter can only have
val ue paraneters and nust be declared in the outernost block.

Li sting 6-3 shows a programthat uses procedures as paraneters.

PROGRAM PASSPROC;

TYPE
REC = RECORD
NAME, PHONE : STRI NG

END;
PTR = "REC,
LST = ARRAY [I..10] OF PTR
VAR
LI ST : LST;
J . | NTEGER;

PROCEDURE INIT (PT : PTR);
BEG N
WRI TELN(* ENTER A NAME') ;
READLN(PT". NAVE) ;
WRI TELN(* PHONE NUVBER?') ;
READLN(PT”. NUVBER)

END;
PROCEDURE DI SPLAY (P : PTR);
BEG N

WRI TELN(PA. NAME, * : *, P*. NUMBER)
END;
PROCEDURE WALKLI ST (VAR LS : LST); PROCEDURE WORK(A: PTR));
VAR

| : I NTEGER
BEG N

FOR| := 1 TO 10 DO

WORK(LS[1) (* FORMAL PROCEDURAL PARANMETER *)

END;

BEG N (* MAI N PROGRAM *)
FORJ := 1 TO 10 DO
NEW (LIST [J]) ;
WALKLI ST(LI'ST, INIT);
WALKLI ST(LI ST, DI SPLAY)
END.

Listing 6-3. Procedural Paraneters

6-5

Pascal / M+ Ref erence Manual 6.3 Conformant Arrays
6.3 Conformant Arrays

You can define an array paraneter for a procedure w thout

speci fying the upper- or |ower-bounds of the array. This lets
you pass different sized arrays to the sane procedure. The arrays
must have the same nunmber of dinensions, the sane el ement type, and
conpati bl e i ndex types.

The declaration for a conformant array is |like the declaration
for a static array paranmeter, except that it nmust be a VAR
paraneter, and you do not specify the upper- and | ower-bounds.
Instead, you supply variables that hold the values when the
procedure is called. A conformant array declaration has the
follow ng form

VAR <nane> : ARRAY [<low>..<hi gh>: <type>] OF <type>
Inside the procedure body, you can use the boundary variables to

control access to the array. Listing 6-4 is an exanple of a
procedure that has a conformant array.

6-6

Pascal / M+ Ref erence Manual 6.3 Conformant Arrays

PROGRAM DEMOCOM

VAR
Al : ARRAY [|..10] OF I NTEGER;
A2 : ARRAY [2..20] OF I NTEGER

PROCCEDURE DI SPLAYI T

(VAR ARL : ARRAY [LOW.H : INTEGER] OF | NTEGER);
(* THE DECLARATI ON ABOVE DEFI NES THREE VARI ABLES:

* ARL : THE PASSED ARRAY *
* LOW: LOAER BOUND OF ARl, PASSED AT RUN TIME *
* H : UPPER BOUND OF ARl, PASSED AT RUN TIME *)
VAR

| : I NTEGER
BEG N (* DI SPLAYIT *)

FOR | := LOWTO H DO

WRI TELN(‘ I NPUT ARRAY[', |, ‘] =, AR1[I])

END;

BEG N (* MAIN PROGRAM *)
WRI TELN(' DI SPLAYI NG UNI NI TI ALI ZED ARRAY Al’);

DI SPLAYI T(Al); (* PASS Al EXPLI CITLY, PASS
1 AND 10 | MPLI CI TLY *)

WRI TELN(' DI SPLAYI NG UNI NI TI ALI ZED ARRAY A2');
DI SPLAYI T(A2) (* PASS A2 EXPLI CITLY, PASS

2 AND 20 | MPLI CI TLY *)
END.

Li sting 6-4. Conformant Array Exanple

Pascal / MT+ Ref er ence Manual 6.4 Functions and Procedures
6.4 Predefined Functions and Procedures

This section describes the predefined functions and procedures
of Pascal /Mr+. Table 6-1 summarizes these predefined routines.

Note: in the paraneter lists for the routines, NUMis an integer or
real expression.

Table 6-1. Predefined Functi ons and Procedures

Arithnetic Functions

Function | Paranmeter List | Returns
FUNCTI ON ABS (NUM REAL
FUNCTI ON ARCTAN (NUM REAL
FUNCTI ON COS (NUM REAL
FUNCTI ON EXP (NUM REAL
FUNCTI ON LN (NUM REAL
FUNCTI ON SI N (NUM REAL
FUNCTI ON SQR (NUM REAL
FUNCTI ON SQRT (NUM) REAL

Bit and byte nanipul ation routines
Function | Paranmeter List | Returns

PROCEDURE CLRBI T (BASI C_VAR, BI T_NUM

FUNCTION HI (BASI C_VAR) I NTEGER
FUNCTION LO (BASI C_VAR) I NTEGER
PROCEDURE PACK (ARRAY, | NTEGER, ARRAY)

PROCEDURE SETBI T (BASI C_VAR, BI T_NUM

FUNCTI ON SHL (BASI C_VAR, | NTEGER) I NTEGER
FUNCTI ON SHR (BASI C_VAR, | NTECER) I NTEGER
FUNCTI ON SWAP (BASI C_VAR) I NTEGER
FUNCTI ON TSTBI T (BASI C_VAR, BIT_NuUM BOCLEAN

PROCEDURE UNPACK (ARRAY, | NTEGER, ARRAY)

Byte and Character nanipul ati on routines

Function | Parameter List

PROCEDURE FI LLCHAR (DESTI NATI ON, LENGTH, CHARACTER)
PROCEDURE MOVE (SOQURCE, DESTI NATI ON, NUM BYTES)
PROCEDURE MOVELEFT (SOURCE, DESTI NATI ON, NUM BYTES)
PROCEDURE (SOURCE, DESTI NATI ON, NUM BYTES)
MOVERI GHT

6-8

Pascal / M+

Ref erence Manual

Table 6-1. (continued)

6.4 Functions and Procedures

Dynani c al | ocation routines

Functi on | Par aneter List

PROCEDURE DI SPOSE (PO NTER, TAG TAG ...)
PROCEDURE NEW (PO NTER, TAG TAG ...)

| nput/ Qut put routines
Function | Parameter List | Returns
PROCEDURE ASSI GN (FI'LE, NAME)
PROCEDURE BLOCKREAD (FILE, BUF, |OR, NUMBYTES,

RELBLK)
PROCEDURE (FI'LE, BUF, | OR, NUMBYTES, RELBLN)
BLOCKWRI TE
PROCEDURE CLOSE (FILE, RESULT)
PROCEDURE CLOSEDEL (FILE, RESULT)
FUNCTI ON EOF (FILE) BOOLEAN
FUNCTI ON EQOLN (FILE) BOCOLEAN
PROCEDURE GET (FI LE)
FUNCTI ON GN\B (FILE) CHAR
FUNCTI ON | ORESULT | NTEGER
PROCEDURE OPEN (FILE, TITLE, RESULT)
PROCEDURE OPENX (FILE, TITLE, RESULT, EXTENT)
PROCEDURE PAGE (FILE)
PROCEDURE PURGE (FI LE)
PROCEDURE PUT (FI LE)
PROCEDURE READ (FILE, VARI ABLE, VARI ABLE,
PROCEDURE READHEX (FILE, VAR SIZE);
PROCEDURE READLN (FILE, VARI ABLE, VARI ABLE,
PROCEDURE RESET (FILE)
PROCEDURE REWRI TE (FI LE)
PROCEDURE SEEKREAD (FILE, RECORD _NUMBER)
PROCEDURE SEEKWRI TE (FILE, RECORD_NUMBER)
FUNCTI ON WWN\B (FILE, CHAR) BOCOLEAN
PROCEDURE WRI TE (FILE, VARI ABLE, VARI ABLE,
PROCEDURE WRI TEHEX (FILE, EXPRESSION, SIZE)
PROCEDURE WRI TELN (FILE, VARIABLE, VARI ABLE, ...
PROCEDURE LWRI TEHEX (FILE, EXPRESSION, SIZE) *

* does not apply to the 8080 inpl enentation

6-9

Pascal / MT+ Ref er ence Manual

Procedures

6.4 Functions and

Table 6-1. (continued)
String handling routines
Function | Parameter List | Returns
FUNCTI ON CONCAT (SOURCEL, STRI NG
SOURCE2, . . ., SOURCERN)
FUNCTI ON COPY (SOURCE, LOCATI ON, NUM BYTES) STRING
PROCEDURE DELETE (TARGET, | NDEX, SIZE
PROCEDURE | NSERT (SOURCE, DESTI NATI ON, | NDEX)
FUNCTI ON LENGTH (STRI NG | NTEGER
FUNCTI ON POS (PATTERN, SOURCE) | NTEGER
Transfer Functions
Functi on | Paranmeter List | Returns
FUNCTI ON CHR (1 NTEGER) CHAR
FUNCTI ON ODD (ORDI NAL) BOOLEAN
FUNCTI ON ORD (ORDI NAL) I NTEGER
FUNCTI ON ROUND (NUM | NTEGER
FUNCTI ON TRUNC (NUM I NTEGER
M scel | aneous routi nes
Function | Parameter List | Returns
FUNCTI ON @DOS (1 NTEGER, WORD) ** | NTEGER
FUNCTI ON @BDOS86 (I NTEGER, PO NTER) * | NTEGER
FUNCTI ON @KD PTR_TO_STRI NG
PROCEDURE @ERR (1 NTEGER)
FUNCTI ON @HERR
PROCEDURE @HLT
FUNCTI ON @VRK | NTEGER
FUNCTI ON @RLS (1 NTEGER)
FUNCTI ON ADDR (VARI ABLE REFERENCE) | NTEGER
PROCEDURE CHAI N
PROCEDURE EXI T
PROCEDURE | NLI NE (see Programmer's Cuide)
FUNCTI ON MAXAVAI L | NTEGER
FUNCTI ON MEMAVAI L | NTEGER
FUNCTI ON PRED (X) sane type as X
FUNCTI ON Rl MB5 ** BYTE
FUNCTI ON SI ZEOF (VARI ABLE OR TYPE NAME) | NTEGER
PROCEDURE SI MB5 (VAL : BYTE) **
FUNCTI ON SUCC (X) same type as X
PROCEDURE WAI T (PORTNUM , MASK, POLARITY) **

* does not apply to the 8080 inpl enentation

** does not

apply to the 8086 inplementation

6- 10

Pascal / MT+ Ref er ence Manual ABS Functi on

ABS Function

Synt ax:
FUNCTI ON ABS(X) ;
Expl anati on:
ABS returns the absolute value of X X must be a real or
i nteger expression. The result has the sanme type as X
Exanpl es:

ABS(- 5. 789)

5.789

ABS(56)

56

6-11

Pascal / MT+ Ref er ence Manual ADDR Functi on

ADDR Functi on

Synt ax:
FUNCTI ON ADDR(VARI ABLE OR ROUTI NE) : PO NTER;
Expl anati on:

ADDR returns the address of a variable, function, or procedure.
Variable references can include subscripted variables and record
fields. ADDR does not work with constants, user-defined ordinal
types, or any itemthat does not take code or data space.

You can reference externals, including those in overlays.
However, you nust keep in nmind the scope of the referenced item
For example, you cannot use ADDR in the main program to find the
address of a variable you declare in a nested procedure.

Exanpl e:

PROCEDURE ADDR_DEMX PARAM : | NTECER) ;
VAR
REC : RECORD
J . | NTEGER,
BOOL : BOOLEAN;
END;

ADDRESS : | NTECGER,
R : REAL;
S1 ARRAY[| ..10] OF CHAR;
P : ™I NTEGER

BEGI
P : = ADDR(ADDR DEMD);
P : = ADDR(PARAM ;
P : = ADDR(REC);
P : = ADDR(REC. J);
END;

6-12

Pascal / MT+ Ref er ence Manual ARCTAN Functi on

ARCTAN Functi on

Synt ax:
FUNCTI ON ARCTAN(X) ;
Expl anati on:

ARCTAN returns the angle, expressed in radians, whose tangent
is X X nust be a real or integer expression. The result is real
nunber .

Exanpl e:

ARCTAN(L) = O. (* THE ANGLE IS PI |/ 4 *)

6-13

Pascal / MT+ Ref er ence Manual ASSI GN Functi on

ASSI GN Functi on

Syntax:
PROCEDURE ASSI G\(FILE, NAME);

ASSI GN attaches an external filenane to a file variable before
using a RESET or REWRI TE procedure. FILE is a filename; NAME is a
literal or a variable string containing the name of the file to
create. FILE can be of any type, but nust be of type TEXT to use
the special device nanes listed in Table 6-2.

Pascal / M+ inplenents the Pascal local file facility using
temporary filenames in the form

PASTMPxX. $$$

where xx is sequentially assigned, starting at =zero, from the
begi nning of each program

If an ASSIGN does not precede an external file REWRITE, a
temporary filenane attaches before creation. Locally declared files
cannot be used as tenporary files unless you initialize the file
with ASSIGN(<file>"").

The following table defines the device nanes supported in the
CP/MP run-time environment.

Table 6-2. Device Nanes

Name | Definition

CON: As input, echoes input characters, CR as CR/LF,
and backspace [CHR(8)] as backspace, space,
backspace

As output, echoes CR as CR/LF and CP/M expands
tabs to every 8 character positions. Li ne-feed
cannot be out put.

KBD: CP/ M consol e, input device only. No echo or
interpretation. Cannot be used with CON: input
or output.

TRM CPIM consol e, out put devi ce only. No

interpretation

LST: CP/M printer, out put device only. No
interpretation, including no tab expansion.

6- 14

Pascal / MT+ Ref erence Manual ASSI GN
Functi on

Tabl e 6-2. (continued)
Narme | Definition
RDR: CP/ M reader, input device only. Call auxiliary
input routine in the BIOS via the BDOS, using
Function 3.

PUN: CP/ M punch, output device only. Call auxiliary
output routine in the BICS via the BDOS, using
Function 4.

Note that wusing CON: and KBD: together can create problenms
because of the way they are inplenented. To inplenent CTRL-S, CP/M
checks for typed characters when perform ng BDOS Function 2, witing
to CON:. If you type a character other than CTRL-S, CP/M stores it
internally, anticipating a subsequent call using Function 1.

Function 6, used by KBD:, goes directly to the BIGS for input,
ignoring any character in this internal buffer. Therefore, your
program might appear to be losing characters when in fact CP/Mis
storing theminternally.

Exanpl es:
ASSI GN(CONIN, “ CON: ")
ASSI GN(KEYBOARD, " KBD: ') ;

ASSI GN(CRT, ' TRM ') ;
ASSI G\(PRI NTFI LE, ' LST: ') ;

6- 15

Pascal / MT+ Ref er ence Manual BLOCKREAD, BLOCKWRI TE Functi on

BLOCKREAD, BLOCKWRI TE Functi on

Synt ax:

BLOCKREAD (F: FI LEVAR, BUF: ANY; VAR | OR | NTECER, SZ, RB: | NTEGER)
BLOCKWRI TE(F: FI LEVAR; BUF: ANY; VAR | OR I NTECER;, SZ, RB: | NTECGER)

Expl anati on:

These procedures enable direct disk access. FILEVAR is an
untyped file (FILE;). BUF is any array variable |large enough to
hold the data. It can be indexed. |IOR is an integer that receives

the returned value fromthe operating system SZ is the nunber of
bytes to transfer. SZ is related to the size of BUF;, it nust be a
mul tiple of 128.

If BUF is 128 bytes, SZ nust be 128. If BUF is 4096 bytes, Sz
can be as large as 4096. RB is the relative block nunber, which can
be in the range -1 to 32767. Wen RB is -1, the run-tine routines
assune sequential block transfer. \Wen RB is greater than -1, the
routine calculates the correct file |location and opens new extents
as needed.

The data transfers either to or fromyour BUF variable for the
speci fi ed nunber of bytes.

6-16

Pascal / MT+ Ref er ence Manual CHAI N Functi on

CHAI N Functi on

Synt ax:
PROCEDURE CHAI N(FI LE) ;
Expl anati on:
CHAIN al l ows you to chain fromone programto another.

See Section 3.3 in the Pascal/ M+ Language Programmer's GQuide
for more information.

6-17

Pascal / MT+ Ref er ence Manual CHR Functi on

CHR Functi on

Synt ax:
FUNCTI ON CHR(X) : CHAR;
Expl anati on:
CHR returns the character whose ASCI| value is the integer X
Exanpl es:
VR TELN(CHR(7)) ; (* BEEP THE TERM NAL *)

IFCIN["a..'z'] THEN
C:= CHR(ORD(C) - 32); (* CONVERT TO UPPERCASE *)

6- 18

Pascal / MT+ Ref er ence Manual CLCSE Functi on

CLCSE Functi on

Synt ax:

PROCEDURE CLOSE (FILE, RESULT)
PROCEDURE CLOSEDEL (FILE, RESULT)

Expl anati on:

The CLOSE procedure closes files. You nust use it to guarantee
that data witten to a file is purged fromthe buffer to the disk.

CLOSEDEL cl oses and deletes tenporary files after use. FILE is
any filetype variable. RESULT is a VAR INTEGER paraneter that has
the same value as | ORESULT upon return from CLOSE.

Files are inplicitly closed when an open file is RESET. The
nunber of files that can be open at a tinme is CPU dependent. For
CP/ M systens, this nunmber is limted only by the anpbunt of nmenory
avail able for File Control Blocks (FCBs).

6- 19

Pascal / MT+ Ref er ence Manual CONCAT Function

CONCAT Function

Synt ax:
FUNCTI ON CONCAT(SOURCE1l, SOURCE2, ... , SOURCEn) : STRING
Expl anati on:

CONCAT returns a string in which all strings in the parameter
list are concatenated. The strings can be string variables, string
literals, or characters. You can concatenate a string of zero
| engt h. The total length of all strings truncates at 256 bytes.
See the COPY function for restrictions when using both CONCAT and
COPY.

Exanpl e:

PROCEDURE CONCAT_DEMO;

VAR
S1,S2 : STRI NG

BEG N
S1 := ‘'left link, right link';
S2 := 'root root root';
WRI TELN(SI, "' /', S2);
S1 := CONCAT(S1,"' ',S2,"tirrnrry;
WRI TELN(S1) ;

end;

Cut put :

left link, right link/root root root
left link, right link root root root!!!!I!!

6- 20

Pascal / MT+ Ref er ence Manual COPY Function

COPY Function

Synt ax:
FUNCTI ON COPY(SOURCE, LOCATI ON, NUM BYTES) : STRI NG
Expl anati on:

COPY returns a string with the nunber of characters specified
in NUM BYTES from SOURCE, beginning at the index specified in
LOCATI ON. SOURCE nust be a string. LOCATI ON and NUM BYTES are
i nt eger expressions.

The COPY routine does not check whether LOCATION is out of
bounds or negative. Truncation occurs if NUMBYTES is negative or
NUM BYTES pl us LOCATI ON exceeds the | ength of the SOURCE.

Exanpl e:

PROCEDURE COPY_DEMO,
BEG N

LONG STR := '"H from Cardi ff-by-the-sea’;

VRl TELN(COPY(LONG_STR, 9, LENGTH(LONG_STR) - 9+1)) ;
END;

Qut put :
Cardi ff-by-the-sea

Not e: COPY and CONCAT are string returning pseudo-functions and
have only one statically allocated buffer for the return value.
Therefore, if you use these functions nore than once within the sanme
expression, the value of each occurrence becones the value of the
| ast occurrence. For exanple,

CONCAT(A, STRINGL) = CONCAT(A, STRI N&2)

is always true, because the concatenation of A and STRIN& repl aces
that of A and STRINGL. As a further exanple,

WRI TELN(COPY(STRINGL, 1, 4), COPY(STRI NGL, 5, 4))

writes the second set of four characters in STRINGL tw ce.

6-21

Pascal / MT+ Ref er ence Manual CCS Functi on

COS Function

Synt ax:
FUNCTI ON COS(X) : REAL;
Expl anati on:

COS returns the cosine of X. X' the angle in radians, nust be
real or integer. The result is real.

Exanpl e:

I F COS(ANG) = SIN(ANG) THEN
WRI TELN(* 45 DEGREES');

6-22

Pascal / MT+ Ref er ence Manual DELETE Function

DELETE Function

Synt ax:

PROCEDURE DELETE(TARGET, | NDEX, Sl ZE);

Expl anati on:
DELETE renoves SIZE characters from TARCGET beginning at the
byte named in | NDEX TARGET is a string. I NDEX and S| ZE are

i nteger expressions. No action occurs if SIZE is zero.

Not e: serious errors result if SIZE is negative. The data and
surroundi ng nenory can be destroyed if the INDEX plus the SIZE is
greater than the TARGET, or the TARGET is enpty.

Exanpl e:
PROCEDURE DELETE_DEMO,
VAR
LONG_STR : STRI NG
BEG N
LONG STR : = * get rid of the |eading blanks';

WRI TELN (LONG STR) ;
DELETE(LONG STR, |, POS(' g', LONG STR)-1);
VRl TELN(LONG_STR) ;

END;

Qut put :

get rid of the |eading bl anks
get rid of the |eading blanks

6-23

Pascal / MT+ Ref er ence manual DI SPOSE Functi on

DI SPOSE Functi on

Synt ax:
PROCEDURE DI SPOSE(VAR P : PO NTER);
PROCEDURE DI SPOSE(VAR P : PO NTER, VARI ANTS);

Expl anati on:

Dl SPOSE deal | ocates space that NEW all ocates. When DI SPOSE
returns, the value of the pointer variable is undefined. |If you are
usi ng the FULLHEAP menory nmanager, the space is available for reuse.
O herwi se, the space is not available for reallocation.

See NEW for an exanple of using DI SPOSE and nore infornmation
about deal | ocating variant records.

6-24

Pascal / MT+ Ref er ence manual EQLN, ECF Functi on

EOLN, ECF Function

Synt ax:
FUNCTI ON ECLN : BOOLEAN,
FUNCTI ON EQOLN(VAR F : TEXT) : BOOLEAN;
FUNCTI ON ECF : BOCLEAN;
FUNCTI ON EOF(VAR F : FILE) : BOCLEAN,
Expl anati on:

EOLN returns TRUE when the wi ndow variable is over the end- of-
line character in a file. EOF returns TRUE when the w ndow vari abl e
is over an end-of-file character. |If you do not specify a file, the
default input file is assuned.

EOLN returns TRUE on disk TEXT files when a READ statenent
reads the last valid character on a |line. The sequence of
statements for a READ on nonconsole files is,

CH := F;
GET(F);

This positions the wi ndow variable over the end-of-file character.
Thus, EOLN returns TRUE on nonconsole TEXT files when the |ast
character is read, and a blank returns instead of the end-of-1line
character.

On console files, this sequence reverses; READ has an initial
call to GET followed by an assignnent fromthe window variable. For
this reason, EOLN returns TRUE in console files after the
carriage/return line-feed is read. EOLN returns TRUE in nonconsol e
files after the last character is read. A blank still returns in
the character.

EOF, |ike EOQOLN, returns TRUE when the | ast character is read on
nonconsole files. On console files, EOF is TRUE only when the end-
of-file indicator is entered. The system does not support reading
past the end-of-file on console or disk files; it can crash. The
wi ndow variable returns a blank when ECF is TRUE.

EOF does not beconme TRUE at the end of the valid data in non-
TEXT files if the data does not fill up the entire last sector of
the file.

The follow ng exanple illustrates these concepts. Suppose the
input streamfor a TEXT file consists of

[ATB]CJean] D] E [ean] e |

6- 25

Pascal / MT+ Ref er ence Manual EQLN, ECF Functi on

If you repeatedly read characters fromthis stream EOLN and ECF return
the val ues summarized in Table 6-3.

Table 6-3. EOLN, EOF Values for a TEXT File

Consol e Nonconsol e
Characte ECQLN ECF Characte ECLN ECF
r r
ret urned r et ur ned
A F F A F F
B F F B F F
C F F C T F
space T F space F F
D F F D F F
E F F E T F
space T F space T T
space T T space T T

For a non-TEXT file, suppose the input stream consists of

Tabl e 6-4 shows the val ues of EOF when you repeatedly read integers from
the input stream

Table 6-4. EOF Values for a Non-TEXT File

Val ue returned | ECF
1 F
2 F
3 F
6682 F
6682 T

(Note that 6682 is the end of the sector)

6- 26

Pascal / MT+ Ref er ence Manual EXI T Function

EXIT Function

Synt ax:
PROCEDURE EXI T;
Expl anati on:
EXIT leaves the current procedure or function, or the nmain
program If used in an |INTERRUPT procedure, EXIT also |oads the
registers and reenables interrupts before exiting. EXIT is the

equi val ent of the RETURN statement in FORTRAN or BASIC. You usually
execute it as a staterment following a test.

Exanpl e:

PROCCEDURE EXI TTEST,;
{ EXIT THE CURRENT FUNCTI ON OR MAI N PROGRAM }

PROCEDURE EXI TPROC(BOOL : BOOLEAN);

BEG N
I F BOOL THEN
BEG N
VWRI TELN(* EXI TI NG EXI TPROC) ;
EXIT;
END;
WRI TELN(* STILL I N EXI TPROC, ABOUT TO LEAVE NORVALLY');
END;
BEG N
WRI TELN(‘ EXI TTEST. s

EXI TPROC (TRUE) ;
WRI TELN(* I N EXI TTEST AFTER 1ST CALL TO EXI TPROC) ;
EXI TPROC (FALSE) ;
WRI TELN(* I N EXI TTEST AFTER 2ND CALL TO EXI TPROC) ;
EXIT;
WRI TELN(* THI'S LI NE W LL NEVER BE PRI NTED);

END;

CQut put :

EXITTEST.......

EXI TI NG EXI TPROC

I N EXI TTEST AFTER 1ST CALL TO EXI TPRCC
STILL I'N EXI TPROC, ABOUT TO LEAVE NORVALLY
I N EXI TTEST AFTER 2ND CALL TO EXI TPRCC

6- 27

Pascal / MT+ Ref er ence Manual EXP Function

EXP Function

Synt ax:
FUNCTI ON EXP(X) : REAL;
Expl anati on:
EXP returns the exponential of X X nust be real or integer.
The result is real. The function returns a value that is the natural

|l ogarithm (base e) , raised to the power of X Use this function
with the natural |ogarithmfunction, LN

Exanpl es:
IF (EXP(LN(X) + LN(Y)) - (X * Y) <= TOLERANCE THEN
VRl TELN(' LOGARI THM FUNCTI ONS PASS TEST') ;
WRI TELN(X, "**', Y, "=, EXP(Y * LN(X)));

6- 28

Pascal / MT+ Ref er ence Manual FI LLCHAR Functi on

FI LLCHAR Functi on

Synt ax:
PROCEDURE FI LLCHAR(DESTI NATI ON, LENGTH, CHARACTER);
Expl anati on:

FILLCHAR is a fast way to fill in large data structures wth
the sane data. For exanple, FILLCHAR can bl ank out a buffer.

DESTI NATION is a variable reference, but need not be a packed
array of characters as in UCSD Pascal. It can be subscripted.
LENGTH i s an integer expression.

Note: if LENGIH is negative or greater than the length of
DESTI NATION, it overwites adjacent code or data. CHARACTER is a
literal or variable of type CHAR Fill the DESTINATION with the
nunmber of characters specified by LENGTH.

Exanpl e:
PROCEDURE FI LL_DEMO,

VAR

BUFFER : PACKED ARRAY[I..256] OF CHAR;
BEG N

FI LLCHAR(BUFFER, 256,"' '); { BLANK THE BUFFER}
END;

6-29

Pascal / MT+ Ref er ence Manual GET Function

GET Function

Synt ax:
PROCEDURE GET(VAR F : FILE VARI ABLE);
Expl anati on:
CET advances the w ndow variable by one elenment and noves the
contents of the indicated file into the wi ndow vari abl e. EOF nust
be FALSE before GET executes. VWhen there is no next elenment, EOF

becones TRUE and the val ue of the w ndow vari abl e becones undefi ned.
See Section 7 for nmore details on GET and TEXT files.

6- 30

Pascal / MT+ Ref er ence Manual H, LO SWAP Function

H, LO SWAP Function

Synt ax:
FUNCTI ON Hl (BASI C_VAR) : | NTEGER;
FUNCTI ON LQ(BASI C_ VAR) : | NTEGER;
FUNCTI ON SWAP(BASI C_VAR) : | NTECGER;
Expl anati on:

H returns the upper 8 bits of BASIC VAR (an 8 or 16-bit
variable) in the lower 8 bits of the result.

LOreturns the lower 8 bits, with the upper 8 bits forced to zero.
SWAP returns the upper 8 bits of BASIC VAR in the |lower 8 bits of
the result and the lower 8 bits of BASIC VAR in the upper 8 bits of
the result.

Passing an 8-bit variable to H results in 0. Passing 8 bits to
LO does not hi ng.

The foll owi ng exanpl e shows the results of these functions.

Exanpl e:
PROCEDURE HI _LO _SWAP;
VAR
HL : | NTEGER
BEG N
WRI TELN(H _LO SWAP.)
HL : = $104;

WRI TELN(' HL=", HL) ;
IF H(HL) = 1 THEN
WRI TELN(* HI (HL) =", HI (HL)) ;
IF LO(HL) = 4 THEN
WRI TELN(* LO(HL) =", LO(HL)) ;
|F SWAP(HL) = $0401 THEN
VRl TELN(* SWAP(HL) =, SWAP(HL)) ;

END;
Qut put :
H LO SWAP.
HL=260
HI (HL) =I
LO(HL) =4

SWAP(HL) =1025

6-31

Pascal / MT+ Ref er ence Manual I NLI NE Function

I NLI NE Function

Synt ax:
PROCEDURE | NLI NE(arg/arg/...);
Expl anati on:

INLINE is a built-in feature that allows you to insert data in
the middle of a Pascal/M+ procedure or function. You can insert
smal | machi ne-code sequences and constant tables into a Pascal / M+
program wi t hout using externally-assenbl ed routines.

Section 4.3.2 of the Pascal / M+ Language Programmer's CGui de has
exanpl es of using | NLI NE.

6-32

Pascal / MT+ Ref er ence Manual | NSERT Function

| NSERT Function

Synt ax:
PROCEDURE | NSERT(SOURCE, DESTI NATI ON, | NDEX) ;
Expl anati on:

I NSERT puts SOURCE into DESTINATION at the |ocation specified
in | NDEX DESTI NATION is a string. SOURCE is a character or
string, literal or wvariable. INDEX is an integer expression.
SOURCE can be enpty.

Not e: if INDEX is out of bounds or DESTINATION is enpty, it
destroys data. If inserting SOURCE into DESTINATION nakes
DESTI NATION too long, it is truncated.

Exanpl e:

PROCEDURE | NSERT DEMD,
VAR
LONG STR : STRI NG
S1 : STRING 10];

BEG N
LONG STR : = ' Renmenber Luke';
S1 = "the Force,';

I NSERT(S1, LONG _STR, 10);
WRI TELN(LONG_STR) ;
INSERT('to use ', LONG STR, 10);
WRI TELN(LONG_STR) ;
end;

Cut put :

Remenber the Force, Luke
Remenber to use the Force, Luke

6- 33

Pascal / MT+ Ref er ence Manual | ORESULT Function

| ORESULT Function

Synt ax:
FUNCTI ON | ORESULT : | NTECER;
Expl anati on:

After each |/O operation, the run-tine library routines set the
val ue returned by the I ORESULT function. In general, the value of
| ORESULT is system dependent. Never attenpt to WRITE the | ORESULT
because it resets to O before any 1/0O operation.

Refer to the Pascal/MI+ Language Programmer's Guide for nore
i nformati on about | ORESULT.

Exanpl e:

ASSI GN(F, ' C HELLO) ;
RESET(F) ;

I F 1 ORESULT = 255 THEN
VWRI TELN(' C. HELLO | S NOT PRESENT') ;

6-34

Pascal / MT+ Ref er ence Manual LENGTH Functi on

LENGTH Functi on

Synt ax:
FUNCTI ON LENGTH(STRING : | NTECER,
Expl anati on:

LENGTH returns the integer value of the Iength of the string.

Exanpl e:
PROCEDURE LENGTH_DEMD;
VAR
S1 : STRING [40]
BEG N
S1 :="This string is 33 characters |long';
WRI TELN(' LENGTH OF ', S1,' =", LENGTH(S1));
VWRI TELN(' LENGTH OF EMPTY STRING = ', LENGTH(‘ ")) ;
END;

Cut put :

LENGTH OF This string is 33 characters | ong=33
LENGTH OF EMPTY STRING = 0

6- 35

Pascal / MT+ Ref er ence Manual LN Function

LN Function

Synt ax:
FUNCTI ON LN(X) : REAL;
Expl anati on:

LN returns the natural logarithmof X X nust be real or
integer. The result is real.

6- 36

Pascal / MT+ Ref erence Manual MAXAVAI L, MEMAVAI L
Functi on

MAXAVAI L, MEMAVAI L Function

Synt ax:

FUNCTI ON MAXAVAI L : | NTEGER;
FUNCTI ON MEMAVAI L : | NTEGER;

Expl anati on:

The functions MAXAVAIL and MEMAVAIL work with NEW and DI SPOSE
to manage the heap nenory area in Pascal / MI'+.

MEMAVAI L returns the avail able menory at any given tineg,
regardl ess of fragnentation. MAXAVAIL reports the |argest block
avail abl e.

If the result of these functions displays as a negative nunber,
the amount of nenory remaining is too large to express as a positive
integer. You can display the return value with WR TEHEX.

See your Pascal /MI+ Language Programmer's Cuide for nore
i nformation on the use of dynam c nenory.

6- 37

Pascal / MT+ Ref er ence Manual MOVE, MOVERI GHT, MOVELEFT Functi on

MOVE, MOVERI CHT, MOVELEFT Functi on

§ynt ax:

PROCCEDURE MOVE (SOURCE, DESTI NATI ON, NUM BYTES)
PROCEDURE MOVELEFT (SOURCE, DESTI NATI ON, NUM BYTES)
PROCEDURE MOVERI GHT(SOURCE, DESTI NATI ON, NUM _BYTES)

Expl anati on:

These procedures nove the nunber of bytes contained in NUM
BYTES from the SOURCE |ocation to the DESTINATION | ocation. MOVE
and MOVELEFT are synonyns. They nmove from the left end of the
source to the left end of the destination. MOWERI GHT noves fromthe
right end of the source to the right end of the destination. The
parameters passed to MOERI GHT specify the left end of the source
and destination.

The source and destination can be variables of any type, and they
need not be of the same type. They can be pointers to variables, but not
named or literal constants. The nunmber of bytes is an integer expression
between 0 and 64K

MOVELEFT and MOVERI GHT transfer bytes from one data structure to
another or nove data within a data structure. These procedures nobve on a
byte level, ignoring the data structure type. MOVERI GHT transfers bytes
fromthe low end of an array to the high end. Wthout this procedure,
you would need a FOR loop to pick up each character and put it down at a
hi gher address. MOVERIGHT is nuch faster. You can use MOVERICGHT in an
insert character routine to make roomfor characters in a buffer.

MOVELEFT can transfer bytes from one array to another, delete
characters from a buffer, or nmove the values in one data structure
to anot her.

Wen you use these procedures keep in mnd the foll ow ng:

?? These procedures do not check whether the nunber of bytes is

greater than the size of the destination. |If the destination is
not |arge enough, bytes spill into the adjacent data storage
ar ea.
?
?? Mving 0 bytes nobves not hing.
5

?? There is no type checking.

6- 38

Pascal / MT+ Ref erence Manual MOVE, MOVERI GHT, MOVELEFT
Functi on

Exanpl e:

PRCCEDURE MOVE_DEMO,

CONST
STRI NGSZ = 80;

VAR
BUFFER : STRI Nd STRI NGSZ] ;
LINE : STRING

PROCEDURE | NSRT(VAR DEST : STRING |NDEX : |NTEGER VAR SOURCE :
STRING);
BEG N
| F LENGTH(SOURCE) <= STRINGSZ - LENGTH(DEST) THEN
BEG N
MOVERI GHT(DEST[| NDEX], DEST[| NDEX+LENGTH(SOURCE)],
LENGTH(DEST) - | NDEX+1) ;
MOVELEFT(SOURCE[1], DEST[| NDEX], LENGTH(SOURCE));
DEST[0] : =CHR(ORD(DEST[0]) + LENGTH(SOURCE))

END,
END,
BEG N
VRl TELN(* MOVE_DEMO. DF
BUFFER : = '"Judy J. Smith/ 335 Drive/ Lovely, Ca. 95666';
VRl TELN(BUFFER) ;
LINE : = 'Rol and *

| NSRT(BUFFER, POS(* 5', BUFFER) +2, LI NE) ;
WRI TELN (BUFFER) ;
END;

Cut put :
MOVE_DEMO.

Judy J. Smith/ 355 Drivel/ Lovely, Ca. 95666
Judy J. Smith/ 355 Roland Drive/ Lovely, Ca. 95666

6- 39

Pascal / MT+ Ref er ence Manual NEW Functi on

NEW Functi on

Synt ax:

PROCEDURE NEW (VAR P : PO NTER);

PROCEDURE NEW (VAR P : PO NTER;, VARI ANTS);
Expl anati on:

NEW dynamically allocates space for a record of the pointer's
type, and sets the value of the pointer to the new record. For
variant records, the procedure allocates enough space to hold the
| argest variant, unless you specify which variant you want.

Specify the variant by its tag value. |f the record has nested
variants, specify the variants in the order of nesting. When you
deal l ocate a record with DI SPOSE, use the same paraneter |ist.

Exanpl e:

PROGRAM NEVDEMO,

TYPE
COL = (RED, YELLOW BLUE, GREEN, ORANGE, PURPLE);
PTR = "REC,
REC = RECORD
A : | NTEGER
CASE LIGHT : COL OF
RED :0);
YELLOW: (R : REAL);
BLUE : (
CASE TINT : COL OF
GREEN : (W X, Y, Z: INTEGER);
PURPLE : (H, I, J, K: REAL)
)
END;
VAR
GENERAL, SMALL, BIG : PTR;
BEG N
VWRI TELN(* TH S PROGRAM DOES NOTHI NG BUT TWEAK THE HEAP');
NEW GENERAL) ; (* FOR ANY VARI ANT *)
NEW SMALL, RED); (* FOR SMALLEST VARI ANT *)

NEW BI G, BLUE, PURPLE); (* FOR LARGER VARI ANT *)

DI SPOSE(GENERAL) ;

DI SPOSE(SVMALL, RED);

DI SPOSE(BI G, BLUE, PURPLE)
END.

6- 40

Pascal / MT+ Ref er ence manual ODD Functi on

ODD Functi on

Synt ax:
FUNCTI ON ODD(| NTEGER) : BOOLEAN;
Expl anati on:

ODD returns TRUE if the expression is odd and FALSE if it is
not .

Exanpl e:

| F ODD(LENGTH(ANSVER)) THEN
WRI TELN(* THAT' ' S ODD! ')
ELSE
WRI TELN(* EVEN | BELI EVE THAT')

6-41

Pascal / MT+ Ref er ence Manual OPEN Function

OPEN Function

Synt ax:
PROCEDURE OPEN (FILE, FILENAME, RESULT);
Expl anati on:

The OPEN procedure opens an existing file for input. FILE is
any file variable. Filenane is a string that contains the CP/M
fil ename. RESULT is an integer variable, which on return from OPEN,
has the sane val ue as | ORESULT.

The OPEN procedure is the same as the sequence:
ASSI GN(FI LE, FI LENAME) ;
RESET (FILE) ;
RESULT : = | ORESULT;
Exanpl e:

OPEN (I NFILE, 'A: FNAME. DAT', RESULT);

6-42

Pascal / MT+ Ref er ence Manual ORD Function

ORD Functi on

Synt ax:
FUNCTI ON ORD(SCALAR) : | NTEGER;
Expl anati on:
ORD returns the ordinal value of a scalar or enunerated type
expression. The result is an integer. For an enunerated type, the

ordinal value is the sane as the order of declaration, starting with
0.

Exanpl e:

FUNCTI ON DI GDEC (C : CHAR) : | NTEGER,

(* C MUST BE IN THE RANGE '0' ..’ 19' *)
BEG N

DI G2DEC : = ORD(C) - ORD('0');

END;

6-43

Pascal / MT+ Ref er ence Manual PACK, UNPACK
Functi on

PACK, UNPACK Functi on

Synt ax:
PROCEDURE PACK(A : ARRAY[M... N OFT; Z: ARRAY[U ... V] OF T;
PROCEDURE UNPACK(A : ARRAYfM... N OF T; Z: ARRAY[U ... V) OF
T,

Expl anati on:

The Pascal / M+ conpiler accepts PACK and UNPACK but does not
execute them Because Pascal/MI+ is byte-oriented, these procedures
are unnecessary.

6- 44

Pascal / MT+ Ref er ence Manual PAGE Function

PAGE Function

Synt ax:
PROCEDURE PACE(FI LE VARI ABLE) ;
Expl anati on:
PAGE skips to the top of a new page when a TEXT file is

printing by inserting a begin-page character in the output file. |If
you do not specify the output file, it defaults to standard output.

6-45

Pascal / MT+ Ref er ence Manual POS Function

POS Function

Synt ax:
FUNCTI ON POS(PATTERN, SOURCE) : | NTEGER

Expl anati on:

PCS returns the integer value of the position of the first
occurrence of PATTERN in SOURCE. If PATTERN is not in the string,
the function returns 0. SOURCE is a string. PATTERN is a string,
character, or literal.

Exanpl e:

PROCEDURE POS_DEMO;
VAR
STR, PATTERN : STRI NG
CH : CHAR
BEG N
STR : = ' Ada Lovel ace';
PATTERN : = ' Love';
CH:="'v";
WRI TELN(' position of ', PATTERN,' in ',STR "' is
POS(PATTERN, STR)) ;
WRI TELN(' position of ',CH,' in ',STR"' is ',POS(CH STR));
WRI TELN(' pos of ‘'z’ in ',STR’ is ',POS('z',STR));
END;

Qut put :

position of Love in Ada Lovelace is 5
position of v in Ada Lovelace is 7
position of 'z' in Ada Lovelace is O

6- 46

Pascal / MT+ Ref er ence Manual PRED Functi on

PRED Functi on

Synt ax:
FUNCTI ON PRED(SCALAR) : SCALAR;
Expl anati on:
PRED returns the value of the predecessor of a scalar

expression. The ordinal value of the predecessor is 1 |less than the
ordi nal value of the expression

Exanpl e:
TYPE

WEEKDAY = (SUNDAY, MONDAY, TUESDAY, WEDNESDAY
THURSDAY, FRI DAY, SATURDAY);

PRED(FRI DAY) = THURSDAY
PRED(2 * 2) = 3

PRED(' D) ='C

6-47

Pascal / MT+ Ref er ence Manual PURGE Functi on

PURGE Function

Synt ax:
PROCEDURE PURGE(FI LE);

Expl anati on:

PURGE deletes the file associated with the file variable.

file is deleted fromthe disk directory.

Exanpl e:
ASSI G\(F, ' BADFI LE. BAD) ;

PURGE(F) ; (* DELETE BADFI LE. BAD *)

6-48

The

Pascal / MT+ Ref er ence manual PUT Function

PUT Function

Synt ax:
PROCEDURE PUT(FI LE VARI ABLE) ;
Expl anati on:

PUT transfers the contents of the w ndow variable associated
with F to the next available record in the file. You nust assign to
the w ndow variable before executing a PUT. You can use this
procedure only if EOF is TRUE. After execution, EOF remains TRUE
and the w ndow vari abl e beconmes undefi ned.

6-49

Pascal / MT+ Ref er ence Manual READ, READLN Functi on

READ, READLN Functi on

Synt ax:
PROCEDURE READ (FI LE VARI ABLE, variable, variable, ...);
PROCEDURE READLN(FI LE VARI ABLE, variable, variable, ...);
Expl anati on:
These procedures read from the file associated with the file
variable into the variables |isted. If you do not specify a file,

the procedures default to the standard input.

READLN works with TEXT files only, but both routines, when
reading from TEXT files, convert Bool eans, reals, and integers from
their ASCI| representations. Al nunbers convert on input, but the
formatting is |ost. Therefore, you should separate nunbers from
each other and from other data types by a blank or a carriage
return/line-feed.

READLN reads the data and then sets the file pointer at the
begi nning of the next |ine. READ does not skip over data. When
reading strings, both procedures read from the current position to
the end of the line. Use READLN to read strings.

When reading fromnon-console files, the sequence of operations
for each data itemis equival ent to:

<vari able> := F";
GET(F);

When reading fromthe console, the sequence is

CET(F);
<vari able> := F";

For non-TEXT files, the variables in the paraneter |ist nust be
the sanme type as the data read fromthe file. The conpiler does not
typecheck, however. You nust construct a paranmeter |list conpatible
with your file's format.

6- 50

Pascal / MT+ Ref er ence Manual READHEX, W\RI TEHEX,
Functi on

READHEX, WRI TEHEX, LWRI TEHEX Functi on

§ynt ax:

PROCEDURE READHEX (VAR F : TEXT; VAR W: ANYTYPE, SIZE : 1..4);
PROCEDURE WRI TEHEX (VAR F : TEXT; EXPRESSI ON : ANYTYPE, S| ZE:
1..4);

PROCEDURE LWRI TEHEX (VAR F : TEXT; EXPRESSION : LONG NT; S| ZE:
l..4);

Expl anati on:

These routines read and wite text in hexadeci mal
representation. SI ZE specifies the nunber of bytes to read or
wite.

READHEX reads two characters for each byte, then it skips to
the next carriage return/line feed. You cannot read nore than one
hexadeci mal nunmber froma single |line.

WRI TEHEX wites two characters for each byte. It does not
out put any leading or trailing blanks or a carriage return/line
f eed.

LWRI TEHEX is |ike WRI TEHEX, except that it only works with [ong
integers, and it can handle up to four bytes.

The 8-bit version of Pascal / M+ does not have LWRI TEHEX, and
its maxi mum data size for READHEX is 2 bytes.

6-51

Pascal / MT+ Ref er ence Manual RESET
Functi on

RESET Function

Synt ax:
PROCEDURE RESET(FI LE VARI ABLE) ;
Expl anati on:

RESET noves the wi ndow pointer to the beginning of a file so
that you can read it. The window variable is set to the first
el ement of F. If you try to reset a file that does not exist,
| ORESULT returns a value of 255. Any other value means success.

RESET calls CLOSE RESET calls CLOSE if the file is already open.

The file is open to reading and witing for random access.
Wth nonconsole typed files, the procedure RESET does an initial
CET. This process nmoves the first element of the file into the
wi ndow vari abl e.

The initial GET does not perform on console or untyped files

because GET waits for a character, and you would have to type a
character before your program coul d execute.

6-52

Pascal / MT+ Ref er ence Manual REVWRI TE Functi on

REWRI TE Functi on

Synt ax:
PROCEDURE REWRI TE(FI LE VARI ABLE) ;
Expl anati on:

REWRI TE creates a file on disk using the name associated with
the file variable, deleting any existing file by that name. |If the
vari able has no associated filenane, specified with ASSI G\, REWRI TE
creates a tenporary file.

Temporary files are useful for scratch pad nenory and data that
you no | onger need after executing the program The last two digits
in the name nake every tenporary file unique, so you can have up to
100 tenporary files.

The EOF and EOLN functions return TRUE because the file is an

output file. The file is open for sequential witing only and is
ready to receive data into its first el enent.

6- 53

Pascal / MT+ Ref er ence Manual RI MB5, SIMB5 Functi on

RI MB5, SI MB5 Functi on

Synt ax:

FUNCTI ON RI MB5 : BYTE;
PROCEDURE SI MB5(VAL : BYTE);

Expl anati on:
These routines use the special 8085 instructions RIM and SIM

They call the procedure that contains the instruction. Under CP/M
the heap grows from the end of the data area, and the stack franme

(for recursion) grows from the top of nenory down. CP/' M prel oads
the hardware stack register with the contents of absolute |ocation
0006, unless the $Z option overrides it. The stack frame grows

starting at 512 bytes below the initialized hardware val ue.

Note: these routines are only supported in the 8-bit version of
Pascal / MI'+.

6-54

Pascal / MT+ Ref er ence Manual ROUND Functi on

ROUND Functi on

Synt ax:
FUNCTI ON ROUND(REAL) | NTECGER,;
Expl anati on:
ROUND converts a real to an integer by rounding it up or down
to the nearest integer val ue.
Exanpl es:

ROUND(2. 67) = 3
ROUND(45. 49) = 45

6- 55

Pascal / MT+ Ref erence Manual SEEKREAD, SEEKWRI TE
Functi on

SEEKREAD, SEEKWRI TE Functi on

Synt ax:

PROCEDURE SEEKREAD (F : ANYFILE; RECORD_NUM : 0..NAXI NT);
PROCEDURE SEEKWRI TE(F : ANYFI LE; RECORD_NUM : 0..MAXI NT);

Expl anati on:

These procedures support random access |/0O SEEKREAD r eads
fromthe specified record into the wi ndow variable. SEEKWRI TE wites
from the window variable to the specified record. You mnust assign
to the window variable prior to a SEEKWRITE or assign from the
wi ndow variable after a SEEKREAD. The records are nunbered
sequentially, starting with record O.

Files witten using SEEKWRI TE are contiguous, regardl ess of the
record size. A file can be accessed sequentially or randomy, but
not w thout executing a CLOSE before changi ng access npdes.

To use SEEKREAD and SEEKWRITE, link in the library RANDOM O
whi ch supports random access.

Section 7 has exanpl es of these procedures and nore infornmation
about random access |1/ Q

6- 56

Pascal / MT+ Ref er ence Manual SHL, SHR Functi on

SHL, SHR Functi on

Synt ax:

FUNCTI ON SHL(BASI C_VAR, NUM : | NTEGER;
FUNCTI ON SHR(BASI C_VAR, NUM : | NTEGER

Expl anati on:

SHR shifts BASIC VAR by NUM bits to the right, inserting O
bits. SHL shifts the BASIC VAR by NUM bits to the left, inserting O
bits. BASIC_VAR is an 8- or 16-bit variable. NUM is an integer
expr essi on.

Suppose you obtain a 10-bit value from two separate input
ports. Use SHL to read themin:

X := SHL(INP[8] & $1F, 3) ! (INP[9] & $1F);

The exanple reads from port nunber 8, nmasks out the three high
bits returned fromthe INP array, and shifts the result left. Next ,
this result logically OR's with the input from port nunmber 9, which
has al so been masked.

Exanpl e:

PROCEDURE SHI FT_DEMO,

VAR | : | NTEGER,

BEG N
WRI TELN(* SHI FT_DEMO. ")
| 1= 4;
WRI TELN(' I =",1);
WRI TELN(' SHR(I,2)=", SHR(I, 2));
WRI TELN(* SHL(I,4)=",SHL(I,4));

END;
Qut put :
SH FT DEMO........
| =4
SHR(I, 2) =l
SHL(I, 4) =64

6- 57

Pascal / MT+ Ref erence Manua

SIN Function

SIN Function

Synt ax:
FUNCTI ON SI N(ANGLE) : REAL;

Expl anati on:

SIN returns the sine of the angle.

radi ans, as an integer or real expression.

6- 58

Express

the angle

in

Pascal / MT+ Ref er ence Manual S| ZEOF Functi on

S| ZEOF Functi on

Synt ax:
FUNCTI ON Sl ZEOF (VARI ABLE OR TYPE NAME) : | NTEGER;
Expl anati on:

SIZECF is a conpile-tine function that returns the size of the
parameter in bytes. Use it in MOVE statements for the nunber of
bytes to be noved. Wth SIZEOF you do not need to keep changing
constants as the program evol ves. The paraneter can be any variable
or user-defined ordinal type.

SI ZEOF is a conpile-tine function. Only the size of items that

do not generate code to calculate their address can be a paraneter
to SIZEOF. The conpiler nmust know the size of the item

Exanpl e:
PRCCEDURE Sl ZE_DEMO,

CONST
NAMELN = 10;
ADDRLN = 30;
VAR
A : RECORD

NAMVE : STRI NG NAMELN ;
ADDR : STRI NG ADDRLN)
END;
B : RECORD
NAMVE : STRI NG NAMELN ;
ADDR : STRI NG ADDRLN] ;
H RE DATE : | NTEGER;
EMP_NUM : | NTEGER
END;

BEG N
READLN(A. NANE) ;
READLN(A. ADDR) ;
B. H RE DATE : = 0;

B. EMP_NUM : =
MOVE(A, B, SIZEOF(A)); (* MOVES THE NAVE AND ADDR
INTO B *)
W TH B DO
WRI TELN (NAVE, ADDR, HI RE_DATE, EMP_NUM
END;

6- 59

Pascal / M+ Ref erence Manual S| ZECF Functi on
In this exanple, if you change the value for NAMELN or ADDRLN,

you do not have to change the paraneters to MOVE, because the SIZECF
function always returns the current size of record A

6- 60

Pascal / M+ Ref erence Manual SQR Function
SQR Function

Synt ax:
FUNCTI ON SQR(X) : REAL or | NTEGER

Expl anati on:

SQR returns the square of X. X nust be real or integer. The
result has the sane type as X

Exanpl e:

25
16.0

SQR(5)
SQR(4. 0)

6-61

Pascal / M+ Ref erence Manual SQRT Functi on

SQRT Function

Synt ax:
FUNCTI ON SQRT(X) : REAL;
Expl anati on:

SQRT returns the square root of X. X nmust be real or integer.
The result is real.

6- 62

Pascal / MT+ Ref er ence Manual SUCC Function

SUCC Function

Synt ax:
FUNCTI ON SUCC(X) : SCALAR
Expl anati on:

X is a scalar or subrange expression. SUCC returns the val ue
of X's successor.

Exanpl es:
SlJCC(! Al) = ‘ B!
SUCC(FALSE) = TRUE
SUCC(23) = 24

6- 63

Pascal / MT+ Ref er ence Manual TRUNC Function

TRUNC Function

Synt ax:
FUNCTI ON TRUNC(REAL) : | NTEGER
Expl anati on:
TRUNC converts a real nunmber to an integer by dropping the
digits to the right of the decinmal point.
Exanpl es:

TRUNC(4. 99) _—
TRUNC(36.2 + 1.11) = 37

6- 64

Pascal / MT+ Ref er ence Manual TSTBI T, SETBIT, CLRBIT Function

TSTBI T, SETBIT, CLRBIT Function

§ynt ax:

FUNCTI ON TSTBI T(BASI C_VAR, BIT_NUM : BOCLEAN
PROCEDURE SETBI T(VAR BASI C_VAR, BI T_NUM ;
PROCEDURE CLRBI T(VAR BASI C_VAR, BI T_NUM ;

Expl anati on:

TSTBIT returns TRUE if the designated bit is on, and returns
FALSE if the bit is off.

SETBIT sets the designated bit in the paraneter.
CLRBIT clears the designated bit in the paraneter.

BASIC VAR is any 8-or 16-bit variable. BIT NUMis 0..15 with
bit 0 on the right.

If BIT_NUMis out of range, results are unpredictable but the
program continues. For exanple, trying to set or clear bit 10 of an
8-bit variable causes unpredictable results, but no error nessage.

Exanpl e:
PROCEDURE TST_SET_CLR BITS;

VAR
I I NTEGER;
BEG N
WRI TELN(* TST_SET_CLR BITS........ ")
I = 0;
SETBI T(1, 5) ;
IF 1 = 32 THEN
I F TSTBI T(1,5) THEN
WRITELN(' 1=, 1);
CLRB IT (I, 5) ;
IF 1 =0 THEN
I F NOT (TSTBIT(1,5)) THEN
WRI TELN(' 1=, 1);
END;

Qut put :
TST SET CLR BITS.......

| =32
I =0

6- 65

Pascal / MT+ Ref er ence Manual WAI T Function

WAI T Function

Synt ax:
PROCEDURE WAI T(PORTNUM , MASK, POLARITY);
Expl anati on:

The WAIT procedure is only available in the 8-bit version of
Pascal / MI+. PORTNUM and MASK are Iliteral or nanmed constants.
POLARITY is a Bool ean constant. WAIT generates a tight status wait
| oop:

I'N portnum
ANl mask
J?? $-4

The WAIT procedure does not generate in-line code for the
status | oop. A states loop is constructed in the DATA area and
called by the WAIT run-time subroutine. Thus, the loop is fast, but
the call and return fromthe loop add a snall amount of execution
time. Use INLINE if time is critical.

Exanpl e:

PROCEDURE WAI T_DEMO,

CONST
CONSPORT = $F7; (* for EXPO NOBUS-Z COWPUTER *)
CONSMASK = $01;

BEG N
WRI TELN(* WAI T_DEMD. "

WRI TELN(* WAI TI NG FOR A CHARACTER) ;
WAI T(CONSPORT, CONSMAXK, TRUE) ;
WRI TELN(* THANKS') ;

END;

6- 66

Pascal / MT+ Ref erence Manual VWAB, GN\B
Functi on

VWAB, GN\B Functi on

Synt ax:
FUNCTI ON GNB(FI LEVAR: FI LE OF PACC) : CHAR;
FUNCTI ON WNAB(FI LEVAR: FI LE OF CHAR, CH: CHAR) : BOOLEAN,
Expl anati on:
These functions give you byte-level, high-speed access to a

file. PAOC is any type that is a Packed Array OF Char. The optinmm
size of the packed array is in the range 128..4095.

G\B lets you read a file one byte at a tine. G\B returns a
value of type CHAR The EOF function is valid when the physical
end-of-file is reached but not based upon any data in the file.
Attenpts to read past the end of the file return $FF.

W\B lets you wite a file one byte at a time. W\B requires a
file and a character to wite. The function returns a Bool ean val ue
that is TRUE if there was an error while witing that byte to the
file. Witten bytes are not interpreted.

G\B and WNB are faster than using F*, GCET/PUT conbinations,
because of their |arger buffer.

6-67

Pascal / MT+ Ref er ence Manual WRI TE, WRI TELN Functi on

WRI TE, WRI TELN Functi on

Synt ax:

PROCEDURE WRI TE (FILE VAR ABLE, EXPR, EXPR, ...);
PROCEDURE WRI TELN(FI LE VARI ABLE, EXPR, EXPR, ...);

Expl anati on:

These procedures wite data to the file associated with F. |f
the file is a TEXT file, they convert numbers to ASCIlI and wite the
Bool ean values as the strings TRUE and FALSE.

WRI TE(F, DATA);
is equivalent to

FA @ = DATA:
PUT(F);

WRI TELN works only with TEXT files, ending an old line and
starting a new one. The procedure is like WRITE, except it puts a
carriage return and line feed after the data. A VWRI TELN with no
expressions outputs only a carriage return/line-feed.

Data can be literal and named constants, integers, reals,
subranges, enunerated, Booleans, strings, and packed arrays of
characters, but cannot be structured types, such as records.

If you do not specify a file, the procedures default to the
standard output file.

WRI TE and WRI TELN treat strings as arrays of characters. They
do not wite the length byte to the file.

You can specify the field format for any data type. The field
format is

<real or non-real variable>: <field w dth>
or
<real variable>: <field width> : <fraction |ength>

The minimm <field width> which is optional, is a natural
nunber that specifies the snallest nunber of characters to wite.
The optional <fraction length> specifies the nunber of digits to
follow the decinal point in a real nunber. For non-real nunbers,
specify only the field wdth. The data is right-justified in the
field. A nunber is always expressed in exponential notation if a
nunber is larger or smaller than the significant digits can
represent.

6- 68

Pascal / MT+ Ref erence Manual WRI TE, WRI TELN
Functi on

If you do not specify a <field width> real nunbers are output
in exponential format, and other types are output without any extra
| eading or trailing blanks.

Exanpl e:
PROGRAM DO WRI TE;

CONST
STR = ' COLORLESS GREEN | DEAS' ;
BUL = TRUE;
I NT = 9876;
REL = 2345.678;
VAR
F : TEXT;
I I NTEGER;
BEG N
ASSI GN(F, * SAMPLE. TXT');
REVWRI TE(F) ;

WRITE(F, '*', 1, 2, 3);
VWRI TE(F, 4, 5, 6);
WRI TELN(F, '*');

WRI TELN(F, ‘2: *', STR ‘*');
WRI TELN(F, ‘3: *', STR 40, ‘*’');
WRI TELN(F, “4: *', BUL, ‘*', INT, ‘*', REL, ‘*');
WRI TELN(F, ‘5: *', BUL:10,'*"',INT:10,"'*', REL:10,"'*");
WRI TELN(F, ‘6: *', REL:10:3, '*', REL:8:1, ‘*');
CLOSE(F, 1)
END.
Qut put :
123456
2. *COLORLESS GREEN | DEAS*
3. * COLORLESS GREEN | DEAS*
4: *TRUE*9876* 2.34567E+03*
5. * TRUE* 9876* 2. 3456E+03*
6: * 2345.678* 2345.7*

6- 69

Pascal / MT+ Ref er ence Manual

@DOS Function

@DOS Function

Synt ax:
FUNCTI ON @BDCsS;

Expl anati on:

@DCS enabl es direct access to the CP/ M operating system

See the Pascal / M+ Language Programmer's Cuide for nore

i nformati on.

6-70

Pascal / MT+ Ref erence Manual @D0OS86 Function

@D0Ss86 Function

Synt ax:
FUNCTI ON @DCS86;

Expl anati on:

@DOS86 enabl es direct access to the CP/ M86® operating system
See the Pascal / M+ Language Programmer's CGuide for nore information.

6-71

Pascal / M+ Ref erence Manual @D
Functi on

@ND Functi on
Synt ax:
FUNCTI ON @MD : ~STRI NG
Expl anati on:
@MND | ets you access the command tail of a command |ine. The
function retrieves the infornmation from the command tail, noves it

to a string, and returns a pointer to this string. The conmand tail
starts with a blank. You can call @MD only once, at the beginning
of the program before you open any files.

Exanpl e:

PROGRAM @VD_DEMO,
TYPE
PSTRG = ~STRI NG

VAR S : STRI NG 16]
PTR : PSTRG
F : FILE OF | NTECER;

EXTERNAL FUNCTI ON @MD : PSTRG

BEG N
PTR : = @D,
S .= PTR";
ASSIG\(F, S);
RESET(F)
END.

6-72

Pascal / MT+ Ref erence Manual @RR Function

@RR Function

Synt ax:
PROCEDURE @ERR,;
Expl anati on:
@RR is the default error handling routine in PASLIB. You can
replace @RR with your own error handling routines. See Section

4.6.3 of the Pascal/M+ Language Progranmer's Guide for nore
i nformati on.

6-73

Pascal / MT+ Ref erence Manual @ILT Function

@1LT Function

Synt ax:
PROCEDURE @HLT;
Expl anati on:
@1LT unconditionally halts your program and returns control to

the operating system Section 7.6 contains an exanple of using

@ALT.

6- 74

Pascal / M+ Ref erence Manual @HERR Function

@ERR Functi on

Synt ax:
FUNCTI ON @HERR;
Expl anati on:

@HERR i s a predefined BOOLEAN variabl e that the NEW procedure
uses to return the result of an allocation request. @HERR returns
FALSE i f space is available, or TRUE when there is no space.

You shoul d al ways use @ERR in conjunction with NEW because

the heap management systemin PASLIB does not signal an error if
there is no space avail abl e when you nake an allocation request.

6-75

Pascal / MT+ Ref erence Manual @/RK Function

@/RK Function

Synt ax:
FUNCTI ON @/RK : | NTEGER;
Expl anati on:
@RK returns the address of the top of the heap. You nust save
the address if you want to use @RLS to restore the heap to its

previ ous state.

You can use @MRK to mark nore than one address, and then use
@RLS to return to any of them

See Section 4.3.5 of the Pascal/MI+ Language Programer's Cuide
for more infornation.

6-76

Pascal / MT+ Ref erence Manual @RLS Function

@RLS Function

Synt ax:
FUNCTI ON @RLS (| NTECER) ;
Expl anati on:

@RLS resets the top of the heap to the address returned by
@/RK.

See Section 4.3.5 of the Pascal / M+ Language Programmer’s Guide
for more infornation.

End of Section 6

6-77

Section 7
Input and Output

This section describes the Pascal/M+ 1/0O (input/output)

system The 1/0O system is hardware-independent, and allows a
programto transfer data between nmenory and external devices such as
a console, printer, or disk. Pascal / MT+ provides both sequenti al

and random access |/ Q.
7.1 Fundanental s of Pascal/MI+ 1/0

A file is like an open-ended array that can contain el enents of
any sinmple or structured type. The size of a file is limted by
your operating systemor by the capacity of your disk.

In Pascal/M+, a file variable has tw parts: a File
Informati on Bl ock (FIB), and a buffer.

?? The File Infornation Block contains information about the file
such as the file's nane and type, whether the file is open for
reading or witing, and the end-of-file and end-of-line flags.
The file named FIBDEF.LIB on your distribution disk contains a
conpl ete description of the FIB.

N

The buffer holds one item of the file's base type. The /0
routines read data into or wite data fromthe buffer, and it is
the only part of the file variable that you can directly access.
This buffer is sonetinmes called the 'wi ndow variable' because
you can visualize it as a windowinto the file.

You declare a file variable |ike any other variable, as in the
foll ow ng exanpl e:

TYPE
I NTFI LE = FILE OF | NTEGER
REC = RECORD
XY, Z: REAL;
I, J, K: INTEGER
END;
VAR
FI, F2 : | NTFILE;
F3 : FILE OF REC;
F4 : FILE OF ARRAY[I..10] OF CHAR;
F5 : FILE (* UNTYPED FILE FOR BLOCK |/ 0O *)

Pascal / MT+ Ref er ence Manual 7.1 Fundanental s of Pascal/MI+ 1/0

Wien you declare a file variable, the I/O system does not
associate a physical disk file with that variable. You have to use
the ASSIGN or OPEN procedure to associate an actual filename with
the vari abl e. After that, all input and output to the file is
through the file variable.

In general, you use the file variable's name to refer to the
file. If you want to reference the buffer, follow the name with the
poi nter character. For exanple,

ASSI GN (F3, ' TEST.DAT');
associ ates the nane TEST.DAT with the file variable F3, and
F2n = 45;
puts the integer value 45 in the buffer of the file variable F2.

Each file must have an explicit end-of-file indicator. Most
operating systems use a control character to indicate the end-of-
file. Wen the I/0 system encounters this character, the predefined
function EOF returns TRUE.

Under sone conditions, however, the valid data ends before the
operating systemsignals an end-of-file condition. This can happen,
for exanple, when the data does not fill the last sector in the
file. In this case, EOF does not detect the actual end of the Data
file. Therefore, you nust use a dummy record as the |last record, or
save the nunber of records in a separate file.

7.2 Regular 1/0

The two basic routines for reading and witing data are GET and
PUT. GET reads the next file element into the buffer. PUT wites
the contents of the buffer to the next position in the file.

To wite data to a file using PUT, you have to assign the data
to the buffer and then call PUT as in the foll owi ng sequence:

Fr o= | TEM
PUT(F) ;

The newy witten itemis the last elenent in the file.

To read data with CET, you take the data from the buffer and
then call GET, as in the foll ow ng sequence:

| TEM : = F7:
GET(F);

The reason for this sequence is not intuitive. Not e however, that
when you call RESET to open the file for reading, the first el enment
in the file is automatically placed in the buffer. Calling GCET
pl aces the next itemin the buffer.

7-2

Pascal / MT+ Ref erence Manual 7.2 Regul ar
I/0

If you are reading from the console, you have to call CET
before you access the buffer, because initially there is nothing in
the buffer, and the program would wait indefinitely for the first
character.

The program shown in Listing 7-1 denonstrates the GET and PUT
routines. The program creates a file, wites sone data to it, and
then reads the data back from the file. Notice that you have to
explicitly nove data in and out of the buffer.

You usually do not have to use GET and PUT. The procedures
READ and WRITE allow you to read and wite data wthout worrying
about the buffer. Both routines can handle any filetype. You do
not have to treat the console and other devices differently when you
use READ and WRI TE.

Stm Nest Source Statenent

1 0 PROGRAM VWRI TE_READ FI LE_DEMO,
2 0

3 0 TYPE

4 1 CHFI LE = FI LE OF CHAR

5 1 VAR

6 1 QOUTFI LE : CHFI LE;

7 1 RESULT : | NTEGER;

8 1 FI LENAME: STRI NG 161;

9 1

10 1 PROCEDURE WRI TEFI LE(VAR F : CHFILE);
11 1 VAR CH: CHAR

12 2 BEGN

13 2 FOR CH = ‘0" TO ‘9" DO
14 2 BEG N

15 3 Fr = CH;

16 3 PUT(F)

17 3 END;

18 2 END,

19 1

20 1 PROCEDURE READFI LE(VAR F : CHFILE);
21 1 VAR | : |INTEGER;

22 2 CH : CHAR

23 2 BEGAN

24 2 FORI1 := 0 TO 9 DO

25 2 BEG N

26 3 CH := F;

27 3 GET(F);

28 3 WRI TELN(CH) ;

29 3 END;

30 2 END,

Listing 7-1. File Input and OQutput

7-3

Pascal / MT+ Ref erence Manual 7.2 Regular 1/0

Stm Nest Source Statenent

31 1
32 1 BEGN
33 1 FI LENAME : = ' TEST. DAT' ;
34 1 ASSI G\(OQUTFI LE, FI LENAME) ;
35 1 REVRI TE(QUTFI LE) ;
36 1 IF I ORESULT = 255 THEN
37 1 WRI TELN(' Error creating ', Fl LENAVE)
38 1 ELSE
39 1 BEG N
40 2 WRI TEFI LE(QUTFI LE) ;
41 2 CLOSE(QUTFI LE, RESULT) ;
42 2 I F RESULT = 255 THEN
43 2 WRI TELN(' Error closing ', Fl LENAVE)
44 2 ELSE
45 2 BEG N
46 3 WRI TELN(' Successful close of ', Fl LENAME);
47 3 RESET (QUTFILE) ;
48 3 I F 1 ORESULT = 255 THEN
49 3 WRI TELN(' Cannot open ', FI LENAME)
50 3 ELSE
51 3 READFI LE(OUTFI LE)
52 3 END;
53 2 END,;
54 1 END.
Listing 7-1. (continued)
7.3 I NP and QUT Arrays

Pascal / M+ al | ows direct mani pul ati on of input and out put
hardware ports through two features.

1) Two predeclared arrays, |INP and OUT, of type BYTE, can be
subscripted with port number constants and expressions.

The INP array can be used only in expressions. The OUT
array can be used only on the LEFT side of an assignnent
statenent. The nost significant byte of INP contains 00 if
the values from INP are assigned to variables of type
| NTEGER.

You can subscript these arrays with integer expressions in
the range 0 to 255. Two types of syntax are used with this
feature. The code is always generated in-line for INP and
QUT, but always uses variable port I/Oinstructions.

Pascal / M+ Ref erence Manual 7.3 NP and QUT Arrays

Exanpl es:

OUT[(PORTNUM + 1)] := $88;
QUT[Q : = $88;
J := INP[(PORTNUM] ;

2) A function INPORT_W and a procedure OUTPRT_W mani pul ate
I/O ports. Al'though they are present in the standard
library, you nust declare them as:

EXTERNAL FUNCTI ON | NPORT_W (PORTNUM | NTEGER) : WORD;
EXTERNAL PROCEDURE OUTPRT_W PORTNUM | NTEGER; DATA: WORD) ;

Exanpl es:

I NCHAR : = | NPORT_W PORTNUM ;
OUTPRT_W PORTNUM OUTCHAR) ;
OQUTPRT_W $004F, QUTCHAR) ;

7.4 Redirected 1/0O

Redirected 1/Ois an alternative to the GET-character and PUT-

character routines in the run-time package. Redirected I/Ois
useful when you do not want the regular 1/O from your operating
system Also, this feature works well for converting nunbers into
strings and strings into nunbers. The sanple program shown in
Listing 7-2 denonstrates this application.

Pascal / M+ has a mechanism you can use to wite your own
character-level 1/Odrivers. This facility lets a ROMbased program

be systemindependent. It also works with user-witten character
i nput and output routines that get their data from or wite it to,
strings or 1/0O ports. It lets them use the conversion routines

built into the system Read-Wite code.

Exanpl e:
READ([ADDR(getch) 1, ...);
WRI TELN([ADDR(putch) 1, ...);

You can wite the "getch” and “putch” routines in Pascal/Mr+ or
in assenbly | anguage. The paraneter requirenments for these routines
are

FUNCTI ON getch : CHAR
PROCEDURE put ch(out putch: CHAR);

Wien you use this nmechanism keep in nmind the follow ng points:
?? You nust show the declaration of these routines.

7-5

Pascal / MT+ Ref er ence Manual 7.4 Redirected
I1/0

?? The nanes need not be getch/putch, but the CET character
routine must not have paraneters, and the PUT character
routi ne must have one paraneter of type CHAR

-~

?? You can assign the address of the procedure to a pointer
using the ADDR function and then specify this pointer. For
exanple, READ([Pl , . . .) . This saves typing tinme, but not
execution tine.

Note that READLN and EOF/ EOLN cannot be used with redirected
I/ O because EOLN and EOF both operate on files. Note also that you
cannot read into STRING variables requiring the use of READLN,
because READLN uses EOLN.

The reason is that the @RST (read string) routine tries to read
directly fromthe consol e device when no file is specified. You can
rewite the @RST routine to perform any input and editing functions
you want for the target-system console device. This does not affect
prograns that do not use redirected I/0Q

Referring to the programin Listing 7-2, note that WR, the PUT
character routine, (line 8 wites to a global string, nanmed CO\V,
and CETCH, the CET character function, (line 28) gets its character
input fromthis global string.

The test program code begins on line 39. The first statenments
initialize the variables required by WR and GETCH CONVERTING i s a
Bool ean value that is TRUE when WR is witing a nunber to CONV.
CONV is initialized to the enpty string, so its length byte is O.

On line 42, the test variable | is assigned the value 2438.
Then, on line 43 the regular WRITELN statenent wites it to the
consol e.

Line 44 denobnstrates the concept of redirected I/O in this
program

VWRI TELN([ADDR(WR)], I);

Here, WR s address is passed to the WRI TELN routine so that
WR is used instead of the PUT character routine in the run-tine

package. The run-time routines convert the nunmber | into characters
that are passed to WR for output to the string, CON. [In this way,
the contents of | are converted to a string. Note that WR nust

always be called with a WRI TELN because it uses the carriage return
to signal that the nunmber is conplete.

Pascal / MT+ Ref er ence Manual 7.4 Redirected

I/0

Stm Nest

t

OCO~NOUITRWNPEF

NFPFRPEPNEAERDMDMOWWNNNNNNNNNRPRPRPRPRPRPRPRPRPRPOOO

PRRPRPRRPRRPRPRPRPREPEPREPREPNNWOWWWN

Sour ce St at enent
PROGRAM CONV_DEMD,

VAR
I I NTEGER
CONV : STRING
CONVERTI NG : BOOLEAN

PROCEDURE WR(CH : CHAR) ;
BEG N
IF CH = CHR($0A) THEN (* DONE, | GNCRE LI NEFEED *)
EXIT;
I F CONVERTI NG THEN
IF CH <> CHR($0D) THEN (* NOT AT END OF STRI NG *)
OONV : = OONCAT(QONV, CH)
ELSE
CONVERTI NG : = FALSE (* REACHED END DONE *)
ELSE
BEG N
CO\V
IF CH <> CHR($0D) THEN
BEA@ N
CONV : = CONCAT(OO\, CH) ;
CONVERTI NG : = TRUE
END
END,
END;

FUNCTI ON GETCH : CHAR
BEG N
I F LENGTH(CONV) > 0 THEN (* SOMVETH NG LEFT TO CONVERT

*

BEG N
GETCH : = COMV 1] ;
DELETE(CONV, 1, 1) ;
END
ELSE
GETCH :=* *; (* RETURN BLANK NO MORE CHARACTERS *)
END;

BEGA N (* MAIN PROGRAM *)
CONVERTI NG : = FALSE;

GO\ = "

| .= 2438;

WRITELN(' 1=, 1);

WR TELN([ADDR(IWR)],1); (* FIELD WDTH MAY BE d VEN *)
| 1= 0;

WRITELN(' 1=, 1);
WRI TELN(‘* CONV="', CONV) ;
READ([ADDR(GETCH)], 1); (* READLN MAY NOT BE USED *)
WRITELN(' I =", 1);
END.
Listing 7-2. Redirected 1/0

Pascal / MT+ Ref erence Manual 7.5 Sequenti al
I/0

7.5 Sequential 1/0

Sequential 1/0O neans that the 1/0O system accesses the data
itens in a file in a serial fashion. Thus, you can read the data
itens one after the other, and you can add itenms only at the end of
the file.

7.5.1 TEXT Files

A TEXT file is a file of ASCII characters subdivided into
lines. The predefined type TEXT is used for ASCI| files. Aline is
a sequence of characters terminated by a nonprintable end-of-line
indicator, usually a carriage return and a |ine-feed.

A TEXT file is simlar to a file of CHAR except that nunbers
are automatically converted when they are read from and witten to
the file. Nunbers witten to TEXT files convert to ASCI |, and can
be formatted. Nunbers read from TEXT files convert to binary.

TEXT files differ from files of type CHAR in the follow ng
ways:

?? TEXT files are subdivided into |lines.

?

?? TEXT files accept both ARRAY[I..N] OF CHAR and PACKED
ARRAY[1..N] OF CHAR as data.

?

?? TEXT files accept STRINGS as data.

?

?? Bool ean val ues convert to the ASCI|I sequence TRUE or FALSE on
wite, but TRUE or FALSE do not convert to Bool ean val ues.

?

?? You can access a TEXT file with GET and PUT for character 1/0O

(which do not do conversions), READ and WRI TE, and READLN and
VARl TELN.

The format of a TEXT file in nenory is a FIB and a 1-byte
wi ndow variable. Figure 7-1 illustrates the way a TEXT file appears
on di sk.

ThisbisbablinecsrThisbisbtheb next blinexsThis b is b theb last blineasr

EF

Figure 7-1. Lines in a TEXT File

7-8

Pascal / MT+ Ref erence Manual 7.5 Sequenti al
I/0

The programin Listing 7-3 wites data to a TEXT file and reads
it back for display on the output device. The procedure WRI TE DATA
wites to the TEXT file and READ DATA retrieves the information
stored in the file.

The field format can be specified for any data type. For non-
real nunbers only the field width is specified, not the number of

pl aces after the decimal point. The data is right-justified in the
field. The output is always expressed in exponential notation if a
nunber is larger than the significant digits can represent. It is

also witten in exponential notation if the field width is too snall
to express the nunber.

The body of the WRI TE_DATA procedure can be witten in the
foll owi ng manner with the sane results:

WRI TELN (F, S);
WRI TELN(F, 1: 4, 45.6789 : 9 : 4);

Referring to Listing 7-3, note that if a READLN were used on
line 31, the integer value 35 would be read properly because the
first blank term nates the nunber. However, the w ndow vari able
woul d advance past the real nunmber to the end of the file. Then, if
you try to read the real nunber, you would only get the EOF.

STRINGS nust always be read with a READLN because they are
termnated with end-of-line characters. |If the data in the file was

This bis b ab string 35 «e
the value returned for S would be the entire line, including the
ASCI | 35.

Wthin the READ DATA procedure, lines 20 and 21 wite the data
to the console in the sanme format as in the file.

The main program stops after processing the call to READ DATA

on line 43. A CLCSE is not necessary because the data in TEXT.TST
is not altered fromthe Iast CLOSE on that file.

7-9

Pascal / MT+ Ref er ence Manual

I/0

Stm

Co~NoOOUThhWNE

t

Nest

PNWWWWWWNNNNNNNNPRPRPERPERPERPERPERPENNNNDNNNDNNNNNERPERPERPNNMNNMNNRPRPRPRPRPRPRPOOO

Sour ce St at enent

PROGRAM TEXT_I O_DEMO,

VAR F : TEXT,
I | NTEGER
S : STRING

PROCEDURE V\RI TE_DATA;
BEG N

WRI TELN(F, S) ;

WRI TE(F, | : 4);

WRI TELN(F, 45. 6789: 9: 4) ;
END;

PROCEDURE READ_DATA;
VAR R : REAL;
BEG N

READLN(F, S) ;

READ(F, 1) ;

READ(F, R) ;

VR TELN(S) ;

WRI TELN(1: 4, ' R 9:4);
END;

BEG N
ASSI GN\(F, * TEXT. TST') ;
REVRI TE(F) ;
I F 1 ORESULT = 255 THEN
WRI TELN(' Error creating')
ELSE
BEG N
| := 35;
S:="THS IS A STRING ;
VRl TE_DATA;
CLOSE(F, I);
I F 1 ORESULT = 255 THEN
WRI TELN("' Error closing')
ELSE
BEG N
RESET(F) ;
| F 1 ORESULT = 255 THEN
WRI TELN(' Error opening')
ELSE
READ_DATA,
END;
END;
END.
Listing 7-3. TEXT File Processing

7-10

7.5 Sequenti al

Pascal / MT+ Ref erence Manual 7.5 Sequential /0O

7.5.2 Witing to the printer

Listing 7-4 shows a typical way to wite to the printer. The
program declares a file variable of type TEXT on line 5, and then on
line 11 assigns this file variable to the printer. The fil ename

"LST:' passed to ASSIGN neans that F is associated with the |ist
device. Al data witten to F routes to the printer.

Next, REWRITE is called to open the list device for witing.
Li nes 23 and 25 use standard Pascal formatting directives. Thus, on
line 23, Ris witten in a field seven characters long with three
digits to the right of the decinmal place.

Once again, note that a CLOSE i s not necessary because the data

was already witten and the buffer does not need to be flushed.

Stm Nest Source Statenent
t

1 0 PROGRAM PRI NTER;

2 0 (* VWRITE DATA AND TEXT TO THE PRI NTER *)
3 0

4 0 VAR

5 1 F : TEXT;

6 1 I : I NTEGER

7 1 S : STRING

8 1 R : REAL;

9 1

10 1 BEG N

11 1 ASSI G\(F, ' LST: ') ;

12 1 REWRI TE(F) ;

13 1 I F 1 ORESULT = 255 THEN

14 1 WRI TELN(' Error rewiting file')
15 1 ELSE

16 1 BEG N

17 2 S:="THSLINE IS A STRING ;
18 2 | := 55;

19 2 R : = 3.141563;

20 2 WRI TE(F, S);

21 2 WRI TE(F, 1) ;

22 2 WRI TELN(F) ;

23 2 WRI TELN(F, R: 7: 3) ;

24 2 WITE (F,1,R ;

25 2 WRI TE(F, | : 4, R 7:3);

26 2 WRI TELN(F) ;

27 2 WRI TELN(F,” THS | S THE END. ')
28 2 END

29 2 END.

Listing 7-4. Witing to a Printer and Nunber Formatting

7-11

Pascal / MT+ Ref er ence Manual 7.6 Random Access |/0O
7.6 Random Access |/0

A randomfile is a typed Pascal file accessed with the random
access procedures SEEKREAD and SEEKWRI TE. You can randomly access

any file by specifying the relative record nunber you want. Thi s
differs from sequential access in which you nust access record O
before record 1, and so on. In Pascal/MI+, you can randomly access

up to 65,536 records.

Wth random files, a file that has been RESET can either be
read with SEEKREAD or witten to with SEEKWRI TE. Sequential files,
on the other hand, can be read only after a RESET. SEEKREAD can
access a new file created with REWRITE after you have witten data
to the file.

Sequential records within a file witten with SEEKWRI TE are
stored contiguously on the disk, regardl ess of the nunber of sectors
occupied by a record. Because of this, you can access a file
created using SEEKWRITE after a CLOSE and RESET using sequential
access net hods.

After SEEKREAD or SEEKWRI TE has accessed a file, you nust CLOSE
the file and reopen it to access it with the sequential methods GET,
READ, PUT, and WRI TE.

The sanmple program in Listing 7-5 called RANDOM DEMO,

denobnstrates random file access. This program creates or uses a
record file of type PERSON Each record in the file contains two
strings: the name and the address of a person. The | oop between

lines 79 and 90 allows you to read any existing record with the
procedure READRECS, or to wite to any record with the procedure
WRI TEREC.

The main program begins on line 69 by asking if you want to
create a file or open one. After you respond, line 78 resets the
file. The repetitive loop allows reading and witing to continue
until you stop it with a Qinput.

In this program note that the procedure ERRCHK checks | ORESULT
for errors encountered in the operating system

The procedure READRECS asks for a record nunber, reads the
record fromthe file, and wites it directly fromw ndow variable to
the screen. Line 47 calls SEEKREAD and gives it the filenane and
record nunber. Line 51 wites the information.

Note that if record O and 2 contain data, you can attenpt to
read record 1, even though it contains no data. Thus, you nust be
careful when the system is unable to see errors in accessing
unwritten records.

7-12

Pascal / MT+ Ref er ence Manual 7.6 Random Access |/ 0O

Note also that the w ndow buffer works just as if it were
declared like a pointer to a record type. To save the data
el sewhere, you nust make an assignment to a data structure of the
sane type as the file, in this case type PERSON. For exanple,

VAR TEMP : PERSON;,
... TEMP : = BF",

The procedure WRI TERECS asks you for the data it needs to fill
a record of type PERSON (lines 56 through 61), and for the record
nunber it should wite (lines 62 and 63). Then on line 64,
WRI TERECS cal |l s SEEKWRITE to wite the data to the disk.

Figure 7-2 shows how the file |ooks after witing data to
records 0, 1, and 3.

Smith, John Brown, Susan bbbbbb Jones, Al an
Mont er ey Pacific Gove | Car el
Record 0 Record 1 Record 2 Record 3

Figure 7-2. Records in a File

7-13

Pascal / MT+ Ref er ence Manual

I/0

Stm Nest

Co~NoOUThhWNE

t

WWWWWWWABRMRMNNNRRERRNNNRRRRPRPRPRRPREPREREPRPRPRRPRRPRPRPOOO0O

=N W

Sour ce St at enent

PROGRAM RANDOM_DEMO,

TYPE

PERSON = RECCRD

VAR
BF
S
|

NAME : STRI NG
ADDRESS : STRI NG
END;

FI LE OF PERSON,
STRI NG,
I NTEGER;

ERROR : BOOLEAN:
CH : CHAR;

EXTERNAL PROCEDURE @HLT;

PROCEDURE HALT;

BEG N

CLOSE(BF, 1) ;

@LT

END;

PROCEDURE ERRCHK;

BEG N

ERROR : = TRUE;

(* DEFAULT *)

CASE | ORESULT OF

0 :

b wWN

BEG N
WRI TELN (* SUCCESSFUL') ;
ERROR : = FALSE;
END;
VRl TELN(' READI NG UNWRI TTEN DATA') ;
VR TELN(' CP/ M ERRCR) ;
WRI TELN(' SEEKI NG TO UNWRI TTEN EXTENT') ;
WRI TELN(' CP/ M ERRCR) ;
WRI TELN(' SEEK PAST PHYSI CAL END OF DI SK');
ELSE
WR TELN(' UNRECOGN ZABLE ERRCR CCDE

©*, 1 ORESULT) ;

END;
END;

Listing 7-5. RandomFile I/0O

7.6 Random Access

7-14

Pascal / MT+ Ref erence manual 7.6 Random Access

I/0

PNWWWWWNNNNNERERENNNNRPRERPERPRPERENNNNNNNDNONNODNNRPRENNNNNNNNRERE

PROCEDURE READRECS;
BEG N

WRI TE(' RECORD NUMBER ?') ;

READLN(1) ;

SEEKREAD(BF, 1) ;

ERRCHK;

| F ERROR THEN

EXIT;

WRI TELN(BFA. NAME, * /', BF~. ADDRESS) ;

END;

PROCEDURE V\RI TERECS;
BEG N
WRI TE(* NAME?') ;
READLN(S) ;
BFN. NAME : = S
WRI TE(' ADDRESS?') ;
READLN(S) ;
BF". ADDPESS : = S;
WRI TE(' RECORD NUMBER?') ;

READLN(1) ;
SEEKWRI TE(BF, 1) ;
ERRCHK;
END,
BEG N
WRI TE(' CREATE FI LE?");
READLN(S) ;
IF S[1] IN[‘Y,'y'] THEN
BEG N
ASSI GN(BF, ' BIG FIL");
REWRI TE(BF) ;
CLOSE(BF, 1) ;
END;
ASSIGN(BF, "BIG FIL");
RESET(BF) ;
REPEAT
WRI TE(' R EAD, WRITE OR QUIT? *);
READ(CH) ;
VRI TELN;
CASE CH OF
‘R,'r’ READRECS,;
W, wW V\RI TERECS;
‘Q,'q : HALT
ELSE
WRI TELN(* ENTER R, WOR Q ONLY')
END
UNTI L FALSE;
END.

Listing 7-5. (continued)
End of Section 7

7-15

Appendix A

Reserved Words and Predefined Identifiers

Pascal / M+ Reserved Wrds

AND END LABEL PACKED
ARRAY FI LE MOD PROCEDURE
BEG N FOR MODEND PROGRAM
CASE FORWARD MODULE RECORD
CONST FUNCTI ON NI L REPEAT
DO GOro NOT SET
DOWNTO I F OF THEN

ELSE I'N R TO

Pascal / MT+ Predefined Identifiers

@Dos CLRBI T I NSERT PRED
@3DbOS86 CONCAT I NTEGER PURGE
@D COPY | ORESULT PUT
@RR cos LENGTH READ
@HERR CREATE LO READHEX
@ T CSP LONG READLN
@RK CSPF LVRI TEHEX REAL
@RLS DELETE MAXAVAI L RESET
ABS DI SPOSE MAXI NT REVRI TE
ADDR EOF MEMAVAI L RI MB5
ARCTAN EQOLN MOVE ROUND
ASSI GN EXIT MOVELEFT SEEKREAD
BLOCKREA EXP MOVERI GHT SEEKVRI TE
BLCOCKWRI FALSE NEW SETBI T
BOOLEAN FI LLCHAR obD SHL
BYTE GET CPEN SHORT
CHAI' N G\B OPENX SHR
CHAR HI CRD SI MB5
CHR I NLI NE (08)) SIN
CLGSE I NP PAGE SI ZECF
CLOSEDEL I NPUT PGS SR

End of Appendix A

TYPE
UNTI L
VAR
VWH LE
W TH

SORT
STRI NG

SWAP
TEXT
TRUE
TRUNC
TSTBI T
VWA T

WORD

VARD

VWRI TE
VRl TEHEX
VWRI TELN
XIO
XLONG

Appendix B
Pascal/MT+ Syntax

Backus- Naur Form (BNF) notation uses the follow ng conventions:

NY 3

N

3'\)

::= The expression on the right of this synbol defines the item
on the left. You can pronounce the synbol 'is rewitten as" or
"is defined as.'

| A vertical bar indicates a choice between the itens it
separates. Pronounce it 'or.'

{ } Itens within braces are optional. They can be repeated 0 or
nore tinmes.
< > |Items wWithin angle brackets are self explanatory or further

defined in the syntax specifications.

Itens not in angle brackets are literal; enter them as they
appear.

For exanpl e,

<identifier> ::= <letter> {<letter> | <digit>] _}

states that an identifier is a letter followed by 0 or nore letters,
digits, or underscores.

End of Appendix B

Appendix C
Differences From ISO Standard

The following |ist sunmarizes the additions to |1 SO standard
Pascal that are inplenented in Pascal/ M+,

Addi ti onal predefined scalars: BYTE, WORD, LONG NT, STRI NG
Expressions can contain input froml/O ports.

Assignments can be made to I/O ports.

Qperators on integers & (and), !,| (or), and ~,\,? (not).
CASE drops through on no match.

ELSE on CASE st at ement.

Interrupt, External, and Assenbly Language procedures.
BCD fixed point and binary floating-point reals.

Long and short | NTECGER data types.

Modul ar conpilation facilities.

Redirectable I/O facilities (user witten character 1/0).
Addi tional built-in procedures and functions:

NI IIIIIIINIIS

- bit and byte nani pul ati on,

- fast file I/Q

- randomfile access,

- nove and fill procedures,

- address and size of functions,
- string mani pul ation,

- heap managenent facilities.

The following list summarizes the differences between |SO
standard Pascal and Pascal / MT+.

Identifiers are significant in only the first 8 characters.

Vari abl es are not packed at the bit |evel.

The order of declarations can vary.

The null string is allowed.

CHAR is not inplenmented as |SO string because variable-length
strings are supported (PACKED ARRAY [1..n] OF CHAR).

NIIISN

End of Appendix C

Appendix D
Bibliography

Conway, Richard, David Gies, and E. Carl Zi mrerman. A Priner on
Pascal . Canbridge, Mssachusetts: Wnthrop Publishers, 1976.

Draft Proposal |SO DP 7185; Progranmi ng Languages-Pascal . Can be
obt ai ned from Anerican Nat i onal St andar ds Institute,
International Sales Department, 1430 Broadway, New York, New
Yor k, 10018.

Not designed for the novice. A precise |anguage definition.

Findlay, WIlliam and David A \Watt. PASCAL: An Introduction to
Met hodi cal Progr ammi ng. Pot omac, Maryland: Conputer Science
Press, 1978.

Grogono, Peter. Progranming in Pascal. Reading, Mssachusetts:
Addi son- sl ey, 1978.

A good introduction for self-teaching.

Jensen, Kathleen, and N klaus Wrth. Pascal User Manual and Report.
New York: Springer-Verlag, 1974.

First definition of Pascal. Best used as a reference docunent

MIler, Alan R Pascal Prograns for Scientists and Engi neers.
Ber kel ey, Ca.: Sybex, Inc. 1981.

Wlson, I.R and A°M Addyman. A Practical Introduction to Pascal.
New York: Springer-Verlag, 1979.

Advanced t ext book.

End of Appendi x D

D1

N2-1, T7-2
@Deos, 6-69
@Db0s86, 6-70
@nND, 6-71
@RR, 6-72
@1LT, 6-73
@HERR, 6-74
@RK, 6-75
@RLS, 6-76

A

absol ute val ue, 6-11
actual paraneters, 6-3
AND,
Bool ean operator, 4-4
angl e,
arctangent of, 6-13
cosi ne of, 6-22
sine of, 6-58
arithnetic,
expressions, 4-3
functi ons, 6-8
operators, 4-1
array bounds,
upper, lower, 3-7, 6-6
el enents, 3-7
i ndexi ng, 3-4, 3-7
subrange, 3-7
type definition, 3-7
ASClI | character set, 3-2
val ue, 4-4, 6-18, 6-50,
val ue of a character, 3-
assi gnment operator, 5-1
statenent, 5-1, 5-9, 6-2

7-9
6-67
3

B

BCD,
real numbers, 3-5
bit and byte mani pul ati on
routi nes, 6-8
bl ock, 1-1, 1-5, 3-1, 5-4, 6-5
BLOCKREAD, 6-16
BLOCKWRI TE, 6-16
Bool ean expression, 4-3, 5-6,
5-7, 5-8
Bool ean oper at or
AND, OR, NOT, 4-4

Bool ean val ues,

Index

TRUE, FALSE, 3-3, 5-6, 5-7,
5-8, 6-30, 6-41, 6-49,
6- 64, 6-66, 6-67, 7-6, 7-9
BOOLEAN,
data type, 3-3
bounds in a subrange, 3-6
interval in a set, 4-6
set's base type, 3-9
BYTE,
data type, 3-5

c

CASE statenent, 5-2
in a variant record, 3-11
CHAR,
data type, 3-3
character array mani pul ation
routines, 6-8
CHR,
pseudo- function, 3-3
command |ine, 6-71
command tail, 6-71
comrents, 1-6
conpiler, 1-6, 3-1, 3-2, 3-7,
3-8, 5-6, 5-9, 6-44, 6-50
comand- | ine option, 3-5
conmand-line option @ 3-6
concat enati on, 6-20
conformant arrays, 6-6
constant, 2-2
control variable in a FOR
DOMNTO st atenment, 5-4
control variable in a FOR
statenment, 5-3
cosi ne,
of an angle, 6-22
CP/Mfil enane, 6-42

D

data conversion, 3-4
data type CHAR, 3-3
data type,
BOOLEAN, 3-3
BYTE, 3-5
conpatible, 4-5,6-3
CHAR, 3-3
enunerated, 3-2
| NTEGER, 3-4
LONG NT, 3-4
ordinal, 3-5, 5-2, 5-4

pointer, 3-6
record, 3-10
scalar, 3-1
sets, 3-9
short, 3-4
simple, 3-1, 5-4
structured, 3-1, 3-7
subrange, 3-2
WORD, 3-5
deci mal integer, 2-2
decl aration section, 1-1, 6-2
default length of a string, 3-8
definition section, 1-1
devi ce nanes, 6-14
DIV operator, 4-3
DO,
reserved word, 5-3
dot operator, 3-11
dynam c allocation, 6-9, 6-24,
6-37 , 6-40
dynamc strings, 3-8, 3-9

E

el enent of a structure, 5-4
enpty statenent, 5-3
end-of -file indicator,
end-of-line indicator,
envi ronnent ,
CP/IM 6-54, 7-13
exponentiation, 2-3, 4-3, 6-28,
6-67, 7-10
expressions, 4-1, 5-1, 5-4
ext ernal ,
devices, 7-1
filenanme, 6-14
EXTERNAL FUNCTI ON | NPORT_W
7-5
identifiers, 2-2
EXTERNAL PROCEDURE OUTPRT W
7-5

7-2
7-9

F

FALSE,
BOOLEAN val ue, 3-3
fields,
el enments of a record, 3-10
nanes in a record, 3-11
files, 3-1, 4-3, 5-1, 6-19
buffer, 7-1, 7-2, 7-3, 7-12
Informati on Bl ock, 7-1, 7-9
vari able, 6-14, 6-48, 6-50,
6-53, 7-1, 7-2
fixed-point format, 2-3

fl oati ng-point,

format,

real nunbers, 3-5
FOR DOMNTO st atenent, 5-4
FOR statenent, 5-3
formal parameters, 6-3

FORWARD decl aration, 6-2
fragnent ation, 6-37
free variant, 3-12
function, 1-1, 1-4, 6-1, 6-2,

6-27
FUNCTI ON,

@DCs, 6-69

@BD0OS86, 6-67

@M, 6-71

@HERR, 6-74

@RK, 6-75

@RLS, 6-76

ABS, 6-11

ADDR, 6-12, 7-6

ARCTAN, 6-13

CHR, 6-18

CONCAT, 6-20

COPY, 6-21

CCs, 6-22

ECF, 6-25, 6-49, 6-53, 6-66,

7-2, 7-6

EQLN, 6-25, 6-53, 7-6

EXP, 6-28

GN\B, 6-66

H, 6-31

| ORESULT, 6-34, 6-42, 6-52,

7-13

LENGTH, 6-35

LN, 6-36

LO, 6-31

MAXAVAI L, 6-37

MEMAVAI L, 6-37

ODD, 6-41

ORD, 6-43

PCS, 6-46

PRED, 6-47

RI MB5, 6-54

ROUND, 6-55

SHL, 6-57

SHR, 6-57

SIN, 6-58

SI ZEOF, 6-59

SQR, 6-60

SQRT, 6-61

SUCC, 6-62

SWAP, 6-31

TRUNC, 6-63

TSTBI T, 6-64

VW\B, 6-66

G

gar bage col |l ection, 6-37
gl obal
decl aration, 1-5
scope, 2-2
@&Oro statenent, 5-2, 5-5

H

har dware ports, 7-5, 7-6
heap, 6-37, 6-54
hexadeci mal integer, 2-2

identifier, 1-3, 1-5, 2-1, 3-11

| F statenent, 5-6
i ndexes for arrays, 3-4
i nner block, 1-5
I NP,
predecl ared array, 7-5
i nput/out put routines, 6-9
| NTEGER,
data type
literal, 2-2, 3-4
internal data representation,
3-4, 3-5

L

| abel
on a GOTO statenent, 5-5
on CASE statenents, 5-2
| east-significant bit, 3-3
I ength of identifiers, 2-1
LENGTH,
predefined function, 3-8
| ocal declaration, 1-5
| ogi cal expressions, 4-5
| ogi cal operators, 4-2

AND, OR, one's conpl enent NOT

4-5
long integer, 2-2
long integer literal, 2-3
LONG NT,
data type, 3-4
literal

M

mai n program bl ock, 1-1, 1-4
main variant, 3-12

menbers of a set, 4-6, 5-1

m scel | aneous functions, 6-10

MOD operator, 4-3
MODEND,
reserved word, 1-5
modul e, 1-4
MODULE,
reserved word, 1-5
mutual | y recursive procedures
6-1

N

naned constant, 2-3, 3-6, 6-3
6- 65
naned constants, 6-67
native machi ne word, 3-3
natural |ogarithm 6-28, 6-36
nested bl ock, 1-1, 1-5,
procedure, 6-12
variants, 3-11, 6-40
nested WTH statenents, 5-9
nesting conments, 1-6
NI L,
poi nter value, 3-6
nonvari ant record, 3-10
NOT,
Bool ean operator, 4-4
null pointer, 3-6
nuneric literal, 2-2

O

QDD,

pseudo- function, 3-3
one’ s conpl enent NOT, 4-5
operator, 4-1

arithmetic, 4-1

assi gnment, 5-1

Bool ean, 4-2

| ogical, 4-2

precedence, 4-1

relational, 4-2

set, 4-3
OR,

Bool ean operator, 4-4
ORD,

pseudo- function, 3-3
ordi nal ,

data types, 3-2, 3-5

type, 3-2, 3-6, 3-9, 5-2, 5-4,

val ue, 3-6, 6-43, 6-47
ordi nal value of FALSE, 3-3
ordi nal value of TRUE, 3-3
QuT,

predecl ared array, 7-5
outer block, 1-5

outernost block, 1-1
overflow, 4-3

overl ays, 6-12
P
packed structure, 3-3
PACKED,
reserved word, 3-7
par anet ers
vari able, 6-4
Pascal statenents, 5-1
passing arrays to procedures,
6- 6
passi ng procedures and
functions, 6-4
poi nter character,
N 2-1, 3-6, 7-2
poi nter type conpatibility,
poi nt er,
data type,
null, 3-6
precedence of operators,
4
predecessor of a scalar,
predecl ared arrays,
INP, QUT, 7-5
predefined data type
STRING 3-8
predefined function,
LENGTH, 3-8
predefined functions and
procedures,
arithnmetic, 6-8
bit and byte mani pul ati on
routines, 6-8
character array manipul ation
routines, 6-8
dynani c al |l ocati on routi nes,
i nput/out put routines, 6-8
string handling routines,
transfer functions, 6-8
nm scel | aneous routines, 6-8
predefined identifier, 1-3, 2-2
predefined sinple data types,
3-2
printabl e character, 2-3,
procedure, 1-1, 1-4, 6-1,
procedure definition, 6-2
procedur e paraneters,
actual, formal, 6-3
procedure-oriented | anguage
PROCEDURE
@RR, 6-72

3-6
3-6
4-1, 4-

6- 47

6-8

6-8

3-3
6- 27

6-1

@1LT, 6-73

ASSI G\, 6-14, 6-53, 7-2, 7-12

CHAIN, 6-17

CLOSE, 6-19, 6-52, 6-56, 7-10,
7-12, 7-13

CLOSEDEL, 6-19

CLRBI T, 6-64

DELETE, 6-23

DI SPOSE, 6-24, 6-40

EXIT, 6-27

FI LLCHAR, 6-29

GET, 6-30, 6-52, 6-66, 7-2,
7-3, 7-9

I NLI NE, 6-32

I NSERT, 6-33

LVRI TEHEX, 6-51

MOVE, 6-38, 6-59

MOVELEFT, 6-38

MOVERI GHT, 6- 38

NEW 6-40

OPEN, 6-42, 7-2

PACK, 6-44

PAGE, 6-45

PURGE, 6-48

PUT, 6-49, 6-66, 7-2, 7-3, 7-9

READ, 6-50, 7-3, 7-9

READHEX, 6-51

READLN, 6-50, 7-6, 7-9, 7-10

RESET, 6-14, 6-52, 7-2, 7-13

REVWRI TE, 6-14, 6-53, 7-12

RI MB5, 6-54

SEEKREAD, 6-56, 7-13

SEEKWRI TE, 6-56, 7-13

SETBIT, 6-64

UNPACK, 6-44

WAI T, 6-65

WRI TE, 6-67, 7-3, 7-9

VWRI TEHEX, 6-51

WRI TELN, 6-67, 7-7, 7-9

progr am

pseudo-function

pseudo-functi ons,

Q

quoti ent,

R

headi ng, 1-2
paraneters, 1-2

3-2
CHR, 3-3

obb, 3-3

ORD, 3-3

WORD, 3-3

6-21

4-3

random access |/ O, 6-56, 7-1, 7-13
random record nunber, 7-13
real nunbers 2-2, 3-5
real -nunber literal, 2-3
record,
data type, 3-10
recursive procedures, 6-1
redirected 1/O 7-5, 7-6

rel ati onal operators, 4-2, 4-3
rel ati onal operators on sets
IN, = <> <= >= 4-6

remai nder, 4-3
REPEAT statenent, 5-7
reserved word PACKED, 3-7
reserved word,

DO 5-3

PACKED, 3-7
reserved words, 2-2
run-tine entry points, 2-2

S
scal ar data type, 3-1, 5-4
scal ar type, 6-43, 6-62

scientific notation, 2-3
scope, 1-5, 2-2, 5-5, 6-12
gl obal, 1-5
|l ocal, 1-5
of a CASE statement, 5-2
of a control variable, 5-4
sem col on
as a valid statenent, as a
st atenent separator, 5-3
statenent separator, 1-4
sequential /0O 7-1, 7-9
set constructor, 4-5
set expressions, 4-3, 4-5
set operations,
uni on, intersection,
difference, 3-9
set operators, 3-9, 4-3
+, *, -.pp, 4-6
set type definition, 3-9
sets,
data type, 3-9
short data type, 3-4

sinple data type, 3-1, 5-4
sinple type, 4-3, 7-1
sine of an angle, 6-58

square root of a nunber, 6-61
statenents
assi gnment, 5-1

statenents, 1-4

CASE, 5-2
conpound, 5-1
enpty, 5-3
FOR, 5-3
FOR DOMWNTO, 5-4
GOoro, 5-2, 5-5
IF, 5-6
Pascal , 5-1
REPEAT, 5-7
VWH LE, 5-8
WTH, 5-8
string,
handl i ng routi nes,
i ndexi ng, 3-8
literal, 2-3, 3-9, 6-20
static, 2-9, 3-9
zero-length, 6-20
STRI NG
predefined data type, 3-8
strong type check, 3-2, 3-6
structured data types, 3-1

6- 10

arrays, records, sets, files
3-7
structured type, 6-67, 7-1
subrange, 3-5, 3-6
subrange data types, 3-2, 3-9
5-1, 6-62, 6-67
successor of a scalar, 6-62
syntax, 5-1
T
TEXT file, 6-14, 6-50, 6-67, 7-9
transfer functions, 6-10
TRUE,

BOOLEAN val ue, 3-3
FALSE, Bool ean val ues, 5-6,
5-8
type checking, 3-2, 6-38, 6-50
type conversion, 3-2
type conversion functions
FUNCTI ON SHORT, 3-4
FUNCTI ON LONG, 3-4
FUNCTI ON XLONG, 3-4
type conversion operator, 3-2
type definition, 3-1
nonvari ant record, 3-11
variant record, 3-12

5-7,

u

up-l evel reference, 1-5

user - defined ordinal type, 3-5,
6- 59

user-defined ordinal types,
6-12

\Y,

val ue paraneters, 6-3

vari abl e,
address, 6-12
al | ocation of space, 3-1
declaration, 3-1
paraneter, 6-3

variant record, 3-10, 6-40

w

weak type checking, 3-6
VWH LE statenment, 5-8
wi ndow vari abl e, 6-25, 6-30,
6-49, 6-52, 6-56, 7-1, 7-9
W TH statenent, 5-8
VORD,
data type, 3-5
pseudo- function, 3-3

Reader Comment Card

We welcome your comments and suggestions. They help us provide you with better
product documentation.

Date

1. What sections of this manual are especially, helpful?

2. What suggestions do you have for improving this, manual? What information is
missing or incomplete? Where are examples needed?

3. Didyou find errors in this manual? (Specify section and page number.)

Pascal MT +™ Language Reference Manual
First Edition: February 1983
3024-2033

COMMENTS AND SUGGESTIONS BECOME THE PROPERTY OF DIGITAL RESEARCH

