intel

8008 and 8080
PL/M" Programming
Manual

IIIIIIIII

pL/M* PROGRAMMING PAGE 2
preface

PREFACE

This manual is a tutorial introduction to the PL/M langauge, as
it applies to the INTEL 8@@8 and 8@8f processors. To facilitate a
first reading, it has a spiral organization: in the course of a
front-to-back reading, the same topics will arise more than once, to
be explained more fully on the later occasions.

It is also expected that the PL/M programmer will keep this
manual at hand for reference purposes. The table of contents has
been elaborated to encourage such use. For information on the use
of the PL/M compilers themselves, the reader is referred to the
appropriate Compiler User's Manual.

* PL/M is a registered trademark of INTEL Corporation

PL/M PROGRAMMING PAGE 4
Table of Contents

11.3 Example: Bubble-Sort (#2)..vcveeececescsacsccessl2
12. Pointers and Indirect References.....................34

12.]1 Based VariablesS....vviieenvieoseeceeasacnosannsaald
12.2 The Dot OperatOr.ceceeeesessssesssasssaccsssssseld
12.3 Example: Bubble-Sort (#3)..cceeesecesssssccssasslb
12.4 Example: String COmpariSON....ceseosoeccccccseasslB

13. Statement LabElS and GO—TO'SQOOQOOCQDQ.00.0000...0..-39

13.]1 Label NameS..eetieeeeseocveocssoossosossssacsosssesdd
13.2 GO TO StatementsS.ceeeceososscsassssecsssssscssasasi9

14. Compile-Time Macro Processing (LITERALLY) cvceeeecees.4dl
15. Block Structure and SCOP€.:ceeeccccasssascsssosassscsedl

15.1 How Scope is Defined.....eceeeeecsncasccnccsassadl
15.2 What is Subject tO SCOPE...ceceeretcetanscannoessesdb
15.3 Scope Of Labels...iceiieeeceesncsstescssnnsnsensadb
15.4 Use of Block Structure...c.ccceeecacecccssocnasseed’

16. Pre-Declared Variables and Built-In Procedures.......49

16.1 INPUT @nd OUTPUT . e ceeooesososscscsssassssssccsessdd
16.2 LENGTH a@nd LAST ... cceeecsscsccscsccsncsssascsssasssedl
16.3 LOW, HIGH, and DOUBLE. cccccoccessncssssscssscseedl
16.4 Shift and Rotate FunctionsS.....ceeeeeeeccceccecsedl
16.5 Interrupt Control...ceeeeesceoeecacessnconsannned?
16.6 CARRY, SIGN, ZERO, and PARITY.¢.cccocososescscssdl
16.7 The Decimal Arithmetic FunctioN....¢.ceeeeecesesb3
16.8 The MEMORY VeECtOIl .ceeeeeosasocoossasosssssconsesdl
16.9 The Procedure TIME. ... ceteacsceccssscscsvascecssedl
16.10 STACKPTR .. cevtecescsosoasssssasssscsssscssssnascsadd

17. Decimal Arithmetic FacilitieS.....eevieeiensecacceaessads
18. Interrupt Processing FacilitiesS.....cceveeveceseseesedB
'Appendices.-.l'..l....l.........'......Q......._.....I.....Gl
A. A Grammar of the PL/M Language€......cevecsecceeassbl
B. ASCII Codes.'......'O.'I.Q.l..O...Q.'..CII.O...I.67
C. List of Special Characters.....cceeeeescssseacss.b8

D. List Of Reserved WOIrdS....eeeeeeoeacsooscasssasessb69
Eo List of Pre-DeC].ared Identifiers................o?ﬂ

PL/M PROGRAMMING PAGE 5
Introduction

1. INTRODUCTION

1.1 what is PL/M?

PL/M 1s a high-level programming language especially designed
to simplify the task of system programming for the INTEL 8-bit
family of microcomputers -- the 8088 and the 80848.

PL/M provides an effective software tool suited to the
requirements of the microcomputer system designer and implementor.
It gives the programmer control of the processor sufficient for the
needs of system programming, but provides automatic control of many
specific processor resources -- e.g., registers, memory, and stack.
In consequence, PL/M programs can enjoy a high degree of portabliity
between systems.

PL/M has been designed to facilitate the use of modern
technigues in structured programming. These technicues can lead to
rapid system development and checkout, straightforward maintenance
and modification, and a product of high reliability.

1.2 Overview of the Language

A PL/M program is a sequence of "declarations” and "executable
statements".

The declarations allow the programmer to control allocation of
storage, define simple textual substitutions (macros), and define
procedures. PL/M is a "block structured" language: procedures may
contain further declarations which control storage allocation and
define other procedures.

The procedure definition facility of PL/M allows modular
programming: a program can be divided into sections (e.g. teletype
input, conversion from binary to decimal forms, and printing output
messages) . Each of these sections is written as a PL/M procedure.
Such procedures are conceptually simple, easy to formulate and
debug, and easily incorporated into a large program. They may form
-a basis for a procedure library, if a family of similar programs 1is
being developed.)

PL/M handles two kinds of data, its two basic "data types":
BYTE and ADDRESS. A BYTE variable or constant is one that can be
represented as an 8-bit guantity; an ADDRESS variable or constant is
a 16-bit or double-byte gquantity. The programmer can DECLARE
variable names to represent BYTE or ADDRESS values. One can also
declare vectors (or arrays) of type BYTE or ADDRESS.

In general, executable statements specify the computational
processes that are to take place. To achieve this, arithmetic,
logical (boolean), and comparison (relational) operators are defined

PL/M PROGRAMMING PAGE 6
Introduction

for variables and constants of both types (BYTE and ADDRESS). These
operators and operands are combined to form EXPRESSIONS, which
resemble those of elementary algebra. For example, the PL/M
expression

X * (Y - 3) /R

represents this calculation: the value of X multiplied by the
quantity Y-3, divided by the value of R. Expressions are a major
component of PL/M statements. A simple statement form is the PL/M
ASSIGNMENT statement, which computes a result and stores it in a
memory location defined by a variable name. The assignment

O=X*(Y-3) /R

first causes the computation to the right of the -eaquals sign, as
described above. The result of this computation is then saved in a
memory location labeled by the variable name “Q°.

Other statements in PL/M perform conditioneal tests and
branching, 1loop <control, and procedure invocation with parameter
passing. The flow of prograem execution is specified by means of
power ful control structures that take advantage of the
block~-structured nature of the language. Input and ovtput
statements read and write 8-bit values from and to 8088 and 8080
input and output ports. Procedures can be defined which wuse these
basic input and output statements to perform more complicated I/0
operations.

A method of automatic text-substitution (more specifically, a
"compile-time macro facility") 1is also provided 1in PL/M. A
programmer can declare a symbolic name to be completely equivalent
to an arbitrary seguence of characters. As each occurence of the
name is encountered by the compiler, the declared character sequence
is substituted, =so the compiler actually processes the substituted
character string instead of the symbolic name.

PL/M PROGRAMMING PAGE 7
Basic Constituents v

2. BASIC CONSTITUENTS OF A PL/M PROGRAM

PL/M programs are written free-form. That is, the input lines
are column-independent and spaces may be freely inserted between the
elements of the program.

1

2.1 PL/M Character Set

The character set recognized by PL/M is a subset of both ASCII
and EBCDIC character sets. The valid PL/M characters consist of the
alphanumerics

ABCDEFGHTIUJ LMNOPQRSTUVWXYZ
g1 34567839

o N R

along with the special characters

,

S=./ () + - * L, <> g

All other characters are unrecognized by PL/M, in the sense that a
blank is substituted for each such character.

Special characters and combinations of special characters have
particular meanings in a PL/M program, as shown in Appendix C.

2.2 Identifiers and Reserved Words

A PL/M identifier 1is used to name variables, procedures,
macros, and statement labels. An identifier may be up to 31
characters in length, the first of which must be alphabetic, and the
remainder either alphabetic or numeric. Imbedded dollar signs are
ignored by the PL/M compiler, and are wused to improve the
readability of an identifier. An identifier containing a dollar
sign is exactly equivalent to the same identifier with the dollar
sign deleted. Examples of valid identifiers are

X
GAMMA
LONGIDENTIFIERWITHNUMBER3
INPUTSCOUNT
INPUTCOUNT

yhere the PL/M compiler will regard the final 2 examples as
instances of the same identifier.

There are a number of otherwise valid 1identifiers, whose
meanings are fixed 1in advance. Because they are actually part of
;he PL/M language, they may not be wused as programmer-defined
identifiers. A list of such RESERVED WORDS is given in.Appendix D.

PL/M PROGRAMMING PAGE 8
Basic Constituents

Blanks may be inserted freely around identifiers, reserved
words, and special characters. Blanks are not necessary, however,
when identifiers or reserved words are separated by special
characters or delimiters. Thus the expression

X*(Yy-3) /R
is equivalent to

X*(Y-3) /R

2.3 Comments

Explanatory remarks should be interleaved with PL/M program
text, to improve readability and provide program documentation.
This is the purpose of the COMMENT construction. A PL/M comment 1is
a sequence of characters (from the PL/M character set) delimited on
the left by the character pair /* and on the right by the character
pair */. These delimiters instruct the compiler to ignore any text
bewteen them, and not to consider such text part of the nprogram
proper. A comment may appear anywhere a space character may; thus
comments may be freely distributed throughout a PL/M program. There
is only one restriction on the placement of a comment: it may not
begin or end inside a character string. Here is a sample (if
atypical) PL/M comment:

/* THIS IS A COMMENT ABOUT COMMENTS */

PL/M PROGRAMMING PAGE 9
Program Organization

3. PL/M PROGRAM ORGANIZATION

STATEMENTS are the building blocks of a PL/M program. A PL/M
statement either defines a computational entity, or specifies a
computation to be performed. For example, the PL/M statement

DECLARE X BYTE;

defines a variable named X that has a single-byte (8-bit) wvalue.
The PL/M statement

X = 3*(Y + 2);

causes the computation of the arithmetic quantity, 3 times the sum
of Y and Z, and the assignment of that quantity as the new value of
the wvariable X. PL/M statements are frequently (but not
necessarily) written one to a line, and invariably terminate with

semicolons.

A PL/M program comprises a sequence of PL/M statements,
followed by the special identifier EOF. In the absence of
statements specifying otherwise, the statements of a PL/M program
are executed segquentially, in the order of their appearance. For
example, the following program fragment 1is a sequence of two
statements:

X
Y

([}
W
-

4+X%;

Two successive actions are specified: first, 3 becomes the current
value of the variable X; second, a new value for the variable Y is
calculated by adding 4 to the current value of X (in this case 3,
for a result of 7). It is obvious that in a different sequence,
these two statements could have a very different effect.

The strictly sequential execution of statements is interrupted
by, for example, an IF-statement:

IF A>63 THEN X=3;
ELSE X=9;
Y = 4+X;

Here the statement ‘X=3" is executed only if the current value of A
1s greater than 63; the statement 'X=9 is executed only if the
current value of A is less than or equal to 63; and the statement ‘Y
= 4+X° is executed always.

Statements may be collected together in groups, delimited by
the reserved words DO and END, to form compound statements, or
blocks. These blocks are then treated as single statements with
respect to the flow of program control. Such a group could, for
eéxample, be a part of a conditional statement:

PL/M PROGRAMMING PAGE 10
Program Organization

IF A>B THEN
DO;
A = B:
B = C;
END;

This statement performs the two assignments to A and B only if A is
greater than B to start with,.

Statements may also be grouped to form a ’procedure’, whose
execution may then be called for from elsewhere in the proaram. The
following procedure, for example, calculates the sum of the squares
of its two arguments:

SUM$SQUARE: PROCEDURE (A, B) ADDRESS;
DECLARE (A, B) ADDRESS;
RETURN A*A + B*B;

END SUMSSQUARE;

After this procedure has been defined, it is availakle for use --
e.dq., for <calculating new values for variables. For example, the
sequence of statements

X
Y

3;
5 + SUMSSQUARE (X, 4);

results in Y having the new value 30.

The exact details of various kinds of statements and other PL/M
language constructs -- assignments, conditional statements, groups,
declarations, procedures, and so forth -- are given in the following
sections.

PL/M PROGRAMMING PAGE 11
Data Elements

4, PL/M DATA ELEMENTS

PL/M data elements can be either variables or constants,
Vvariables are PL/M 1identifiers whose values may change during
execution of the program, while constants have fixed values. The
expression

X* (y -3) /R

involves the variables X, Y, and R, and the constant 3.

4.1 Numeric Constants

A constant is a value known at compile-time, which does not
change during execution of the program. A constant is either a
number or a character string. Numeric constants may be expressed as
binary, octal, decimal, and hexadecimal numbers.

In general,'the base (or radix) of a number is represented by
one of the letters

BOQDH

following the number. The letter B denotes a binary constant; the
letters O and Q signal octal constants. The letter D may optionally
follow decimal numbers. Hexadecimal numbers consist of sequences of
hexadecimal digits (6, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F)
terminated by the letter H. The leading character of a hexadecimal
number must be a numeric digit, to avoid confusion with a PL/M

identifier; a leading zero is always sufficient. Any number not
followed by one of the letters B, O, 0, D, or H is assumed to be
decimal. Numbers must be representable in 16 bits. The following

are valid constants in PL/M:

2 330 118B 33FH 55D 55 @BF3H 65535

The dollar sign may be freely inserted between the <characters
of a constant to improve readability. The two following binary
constants are exactly equivalent:

1111011040611B
111§1011$0411B

4.2 Character String Constants

) Character strings are denoted by PL/M characters enclosed
wlthin apostrophes. (To include an apostrophe in a string, write it
4SS a double apostrophe: e.g. the string “~~°0° comprises 2
characters, an apostrophe followed by & 0.) The PL/M compiler
Lepresents character strings in memory as ASCII codes, one 7-bit

PL/M PROGRAMMING PAGE 12
Data Elements

character code to each 8-bit byte, with a high-order zero bit.
Strings of length 1 translate to single-byte values; strings of
length 2 translate to double-byte values. For example,

‘A° is equivalent to 41H
‘AG” is equivalent to 4147H

(see appendix for ASCII character codes). Character strings longer
than 2 characters cannot, of course, be used as BYTE or ADDRESS
values. But they will turn out to be useful in conjunction with the
dot operator, with the INITIAL attribute, and with the DATA
declaration.

4.3 vVariables and Type Declarations

Each variable used in a PL/M program must be declared 1in a
“declaration statement’ Dbefore (earlier in the program text than)
its use in expressions. This declaration defines the variable and
gives necessary information about it.

A PL/M variable takes one of two ‘types’: type BYTE, or type
ADDRESS. Each BYTE data element is an 8-bit, single-byte object;
each ADDRESS data element is a 16-bit, double-byte object. The type
of each variable must be formally declared 1in its declaration
statement,

A declaration of a variable (or a 1list of variables) begins
with the reserved word DECLARE. Each single identifier, or list of
identifiers enclosed in parentheses, is followed by one of the two
reserved words BYTE or ADDRESS. Sample PL/M declarations are

DECLARE X BYTE;
DECLARE (Q, R, S) BYTE;
DECLARE (U, V, W) ADDRESS;

Additional facilities are present in PL/M for declaring
vectors, macros, labels, and data lists. These facilities are
discussed in later sections.

PL/M PROGRAMMING PAGE 13
Expressions and Assignments

5. WELL-FORMED EXPRESSIONS AND ASSIGNMENTS

PL/M expressions can now be more completely defined. A
well-formed expression consists of basic data elements combined
through the various arithmetic, logical, and relational operators,

in accordance %with simple algebraic notation. Examples are
A+ B
A+ B - C
A*B + C/D

5.1 Arithmetic Operators
There are 7 arithmetic operators in PL/M. These are
+ - PLUS MINUS * / MOD

all of the above operators perform unsigned binary arithmetic on
either byte or address values.

The operators + and - perform addition and subtraction. If
both operands are of type BYTE, the operation is done in 8-bit
arithmetic and the result is of type BYTE. If either operand is of
type ADDRESS, the other operand, 1if it is of type RYTE, will be
extended by 8 high-order zero bits, and the operation 1is then
performed 1in 16-bit arithmetic, returning a value of type ADDRESS.
A unary ‘-° operator is also defined in PL/M. 1Its effect 1is such
that (-A) is equivalent to (0-A). Thus -1, for example, is
egquivalent to 6-1, resulting in the BYTE value 255 or @FFH. PLUS
and MINUS perform similarly to + and -, but take account of the
current setting of the CPU hardware carry flag in performinag the
operation.

The operators * and / perform unsigned binary multiplication
and division, on operands of type BYTE or ADDRESS. The result is
always of type ADDRESS. In the event that arithmetic overflow
occurs during multiplication, the result is undefined. The division
operator always rounds down to an integer result, and the result of
division by zero 1is undefined. (The setting of the 808@ hardware
carry flag by these operations is undefined.) MOD performs similarly
to /, except that the result of the operation is not the quotient
from the division, but the remainder.

5.2 Logical Operators
There are 4 logicai (boolean) operators in PL/M. These are

NOT AND OR XOR

These operators perform logical operations on 8 or 16 bits in
Parallel]. NOT is a unary operator, taking one operand only. It

PL/M PROGRAMMING PAGE 14
Expressions and Assignments

produces a result in which each bit 1is the complement of the
corresponding bit of its operand. The remaining operators each take
2 operands, and perform bitwise AND, OR, and EXCLUSIVE OR
respectively. If both operands are of type BYTE, the operation is
an 8-bit operation, and delivers a result of type BYTE. If at least
one operand is of type ADDRESS, the operation is a 1l6-bit operation,
and delivets a result of type ADDRESS. In this case, the BRYTE
operand, 1if any, is first extended to 16 bits by the addition of 8
high-order zero bits. Examples are

NOT 110011008B returns A@8110011R
12101010B AND 110091108B returns 100019200B
191021018B OR 11081100B returns 111011108
12121010B XOR 11001100B returns @1100110B

5.3 Relational Operators

Relational operators are used to compare PL/M values. They are

< less than

> greater than

<= less than or ecual to

>= greater than or equal to
< not equal to

= eguals

Relational operators are always binary operators, taking two
operands, The operands may be of type BYTE or ADDRESS. The
comparison is always performed assuming that the operands are
unsigneé¢ binary integers. If the specified relation between the
operands holds, a value of QFFH is returned, otherwise the result is
QoH. Thus in all cases the result is of type BYTE, with all 8 bits

set to 1 for a true condition, and to @ for a false condition. For
example:

(6 > 5) returns 11111111B

(6 <= 4) returns 00000000B

(6 > 5) OR (1 > 2) . returns @QFFH

(6 > (4+5)) OR (1 > 2) returns Q0H

5.4 Expression Evaluation

Operators in PL/M have en implied precedence, which is used to
determine the manner in which operators and operands are grouped
together. A+B*C causes A to be added to the product of B and C. 1In
this case B is said to be “bound’” to the operator * rather than the
operator +, as a result of which the multiplication will be
performed first. In general, operands are bound to the adjacent

PL/M PROGRAMMING PAGE 15
Expressions and Assignments

operator of highest precedence, or to the left one in the case of &
tie. Technically speaking, PL/M does not guarantee the order of
evaluation of operands and operations within an expression, but
merely defines the association (binding) of operators and operands.
valid PL/M operators are listed below from highest to lowest
precedence. ®perators listed on the same 1line are of equal
precedence.

* / MOD
+ - PLUS MINUS
< <K= K> = >= >
NOT
AND
OR XOR

Parentheses should be used to override the assumed precedence
in the wusual way. Thus the expression (A + B) * C will cause the
sum of A and B to be multiplied by C. For example,

A +B +C+0D is equivalent to ((A + B) + C) +# D
A +B * C is equivalent to A+ (B * ()
A +B-C*pD is equivalent to (A + B) - (C * D)

5.5 Assignment Statements

Results of computations are stored as valuves of variables. At
any given moment, & variable has only one value -- but this value
may change with program execution. The PL/M ASSIGNMENT STATEMENT
re-specifies the value of a variable. 1Its form is

variable = expression ;

The expression to the right of the ecual sign is evaluated, and the
resulting value is assigned to the variable named on the left. The

old value of the variable is lost.
For example, following execution of the statement
A = 3;
the variable A will have a new current value of 3.

The declared precision (BYTE or ADDRESS) of the assigned
variable affects the store operation: if the receiving variable is a
BYTE variable, and the expression is a double-byte (ADDRESS) result,
the high~order byte 1is omitted 1in the store. Similerly, if the
expression yields a single-byte result, and the receiving wvarieable
1s declared type ADDRESS, the high-order byte is filled with zeros.

~ It is often convenient to assign the same expressiqon to several
variables. This 1is accomplished in PL/M by 1listing all the
variables to the left of the equals sign, separated by commas. The

PL/M PROGRAMMING PAGE 16
Expressions and Assignments

variables A, B, and C could all be set to the value of the
expression X + Y with the single assignment statement
A, B, C =X +Y;

A dpecial form of the assignment 1is used within PL/M
expressions. The form of this “embedded assignment’ is

(variable := expression)
and may appear anywhere an expression is allowed. The expression to
the right of the := assignment symbol is evaluated and then stored

into the variable on the left. The value of the embedded assignment
is the same as that of its right half. For example, the expression

A+ (B := C+D) - (E := F/QG)
results in exactly the same value as
A + (C+D) - (F/G)
The only difference is the side-effect of storing the intermediat~
results C+D and F/G into B and E, respectively. These intermedi:

results can then be used at a later point in the program witho.
calculating them again.

PL/M PROGRAMMING PAGE 17
Do Groups

6. DO GROUPS

Statements may be grouped together within the bracketing words
pO and END, to form a do-group. (DO and END are reserved words.)
The simplest do-group is of the form

’

DO;
statement-1;
statement-2;
statement-n;

END;

A group of statements so bracketed may be regarded as a single PL/M
statement, and may appear anywhere 1in a program that a single
statement may. The flow of program control is explicitly controlled
by other forms of the do-group; these are shown below.

6.1 The DO-WHILE Group
The DO-WHILE is a do-group of the form

DO WHILE expression;
statement-1:;
statement-2;
statement-n;

END;

The effect of this statement is: first the expression following the
reserved word WHILE is evaluated. If the result is a quantity whose
rightmost bit is 1, then the sequence of statements up to the END is
executed. When the END 1is reached, the expression is evaluated
again, and again the sequence of statements is executed only if the
value of the expression has a rightmost bit of 1. The group is
executed over and over until the expression results in a value whose
rightmost bit 1is @, at which time execution of the statement group
is skipped, and program control passes out of the group.

Consider the following example:

A= 1;

DO WHILE A <= 3;
A = A+1;

END;

The statement A = A+l will be executed exactly 3 times. The value
of A when program control exits the group will be 4.

_ It is worth commenting here on the relationship between the
l°91C<?l operators, and the WHILE and IF statements. Recall that the
relational operators return a BYTE value of all ones, or all zeros.

PL/M PROGRAMMING PAGE 18
Do Groups

It may be helpful to consider any BYTE whose least significant
(rightmost) bit is 1, as representing a TRUE condition, and any
whose least significant bit is @, as representinag a FALSE condition.
With this interpretation, we may consider (1 < 2) as returning a
value of TRUE. We may also consider that the do-while statement
merely executes the statements of its group as 1long as the
while-expredsion 1is TRUE. Note that the logical operators AND, OR,
and NOT operate bitwise on all the bits of their operands, and in
particular perform the standard actions of boolean algebra on the
least significant bit, provided a 1 stands for TRUE and a @ for
FALSE. For example, with the above definitions,

NOT (TRUE) is FALSE
NOT (FALSE) is TRUE

Finally, observe that these conventions cause a complicated
expression to take on its most obvious meaning. For example:

DO WHILE (A < 14) AND (A > 4);

END;

6.2 The Iterative Do-Group

An iterative do-group executes a group of statements a fixed
number of times. The simplest form of the iterative do-group is

DO var = expr-1 TO expr-2;:
statement-1;
statement-2:
statement-n:

END;

where “var’® is a variable-name, and ‘expr-1° and ‘expr-2° are both
PL/M expressions. The effect of this statement is first to store
the value of expr-l1 into the variable var. Second, the value of the
variable wvar 1is tested, and if it is less than or egual to expr-2,
the grouped statements are executed. When the END is reached, the
variable 1is incremented by 1, and the test is repeated. The group
is repeatedly executed until the value of the wvariable 1is greater
than expr-2, when the test fails, execution of the group is skipped,
and control immediately passes out of the range of the do-group. An
example is

DO I =1 TO 18;
A = A+I;
END;

This iterative do-group has exactly the same effect as the following
DO-WHILE: .

pL/M PROGRAMMING PAGE 19
Do Groups

I = 1;

DO WHILE I <= 16;
A = A+1;
I = I+1;

END;

The more general form of the iterative do-group allows a
stepping value other than 1. This more general form is

DO var = expr-1 TO expr-2 BY expr-3;
statement-1;
statement-2;
statement-n:;

END;

In this case, the variable “var’ following the DO is stepped by the
value of expr-3, instead of 1, each time the END is reached. An
example of this form follows:

/* COMPUTE THE PRODUCT OF THE
FIRST N ODD INTEGERS */

PROD 1;

DO I 1l TO (2*N~1) BY 2;
PROD = PROD*I;

END;

6.3 The DO-CASE Statement

The final form of the do-group is the DO-CASE statement. Its
form is

DO CASE expression;
statement-1;
statement-2;
statement-n;

END;

The effect of this statement 1is first the evaluation of the
expression following the CASE. The result of this is a value K
which must lie between @ and n-1. K is used to select one of the n
Statements of the do-case, which is then executed. The first case
(statement-1) corresponds to K=#, the second case (statement-2)
Corresponds to K=1, and so forth. After only one statement from the
group has been selected and then executed only once, control - passes
beyond the END of the do-case group. If the run-time value of K is
9reater than the number of cases, then the effect of the CASE
Statement is undefined.

PL/M PROGRAMMING PAGE 240
Do Groups

An example of the DO-CASE is
DO CASE SCORE;

CONVERSIONS = CONVERSIONS+1;
SAFETIES = SAFETIES+1;
FIELDGOALS = FIELDGOALS+1;

14

TOUCHDOWNS = TOUCHDOWNS+1];
END;

When execution of this CASE statement begins, the wvariable
SCORE must be in the range 8 - 7. 1If SCORE is 6, 4, or 5 then a
null statement (consisting of only a semicolon, and having no
effect) is executed; otherwise the appropriate variable 1is
incremented.

A more cdmplex example of the DO-CASE is

DO CASE X-5;

X = X+5; /* CASE 9§ */
DO; /* CASE 1 */
X = X+19;
Y = X-3;
END;
DO I = 3 TO 18; /* CASE 2 */
A = A+I;
END;
END; /* END OF CASES */

This example illustrates the use of DO-END blocks to group several
statements as a single (although compound) PL/M statement.

PL/M PROGRAMMING PAGE 21
IF-Statement

7. THE IF-STATEMENT

The IF-statement provides alternative execution of statements.
It takes the form

IF expression THEN statement-1;
ELSE statement-2;

and has the following effect: first the expression following the
reserved word IF 1is evaluated. If the result has a low-order
(rightmost) bit of 1, then statement-1 is executed; if the result
has a rightmost bit of @ then statement-2 is executed. Following
execution of the chosen alternative, control passes to the next
statement following the if-construct. Thus of the two subordinate
statements (statement-1 and statement-2) one and only one is
executed.

The IF-statement tests the rightmost bit of an expression 1in
the same way as the DO-WHILE statement (see section 6.1). The most
intuitive interpretation associates TRUE with a rightmost bit of 1,
and FALSE with a rightmost bit of @.

Consider the following program fragment:

IF A>B THEN RESULT=A;
ELSE RESULT=B;

Here RESULT is assigned the value of A or the value of B, whichever
is greater. As program control falls through this fragment, there
will be exactly one assignment statement executed. RESULT always
gets assigned some value; but only one assignment to RESULT will be
executed.

Let us return to the most general form of the IF-statement:

IF expression THEN statement-1;
ELSE statement-2;

In the event that statement-2 is not needed, the else-clause may be
omitted entirely. Such an IF-statement takes the form

IF expression THEN statement-1;

Here the subordinate statement is executed only if the value of the
if-condition has a rightmost bit of 1; otherwise nothing happens,
and control falls right through the if-construct.

For example, the following segquence of PL/M statements will
assign to INDEX either the number 5, or the value of Y, whichever
the larger. The value of X will change during execution of the
IF-statement only if Y is greater than 5. The final value of X is
always copied to INDEX in any case.

PL/M PROGRAMMING PAGE 22
IF-Statement

X = 5;
"IF Y > X THEN X = Y
INDEX = X;

The power of the IF construct in enhanced by compound
statements. Since a do-group is itself syntactically equivalent to
a single statement, each of the two subordinate statements 1in an
IF-construct may be a do-group. For example:

IF A=B THEN
DO;
END;
ELSE
DO;
END;
These do-groups can contain further nested if-statements, variable
and procedure declarations, and so on.

There is only one restriction on subordinate statements of
-if-statements: statement-1 (that is, the subordinate statement just
following the if-clause) may not itself be an if-statement, unless
no ELSE 1is attached to either of these IF's. In other words, the
construction

IF condition-1 THEN
IF condition-2 THEN statement-3;
ELSE statement-2;

is ambiguous and illegal (to which IF does the ELSE belong?), and
must be replaced by one of the two following constructions,
depending on the actual intention:

(1) IF condition-1 THEN
DO;
IF condition-2 THEN statement-3;
END;
ELSE statement-2;
(2) IF condition-1 THEN
DO;

IF condition-2 THEN statement-3;
ELSE statement-2; ‘
END;

PL/M PROGRAMMING PAGE 23
Arrays

8. ARRAYS
8.1 Array Declarations

It 1is frequently convenient to let one PL/M identifier
represent mort than one BYTE or ADDRESS value. When this is
desired, the identifier must be suitably declared in a DECLARE
statement. For example,

DECLARE X (100) BYTE;

causes the identifier X to be associated with 188 data elements,
each of type BYTE. Furthermore,

DECLARE (A, B, C) (10@) ADDRESS;

causes the 3 identifiers A, B, and C each to be associated with 1080
data elements of type ADDRESS, so that 300 elements of type ADDRESS
have been declared in all. Variables that have been declared in
this manner to name more than a single data element are called

arrays, vectors, or subscripted variables.

(In the special case that an array is declared to have a length
of zero, no space will be allocated for it in memory. As a result,
the variable will be a ghost, which refers to memory not
specifically reserved for it.)

8.2 Subscripted Variables

It is sometimes necessary to refer to each element of an array
by name. For example,

DECLARE X(108) BYTE;

actually declares 148 data elements of type BYTE, with names X(0),
X(1), X(2), and so on up to X(99). If we wish to add the third data
element to the fourth, and store the result in the fifth, we can
write the PL/M assignment statement

X(4) = X(2) + X(3);

The index in parentheses, which selects the specific data element of
the array, is called an array index, or subscript.

Much of the power of a subscripted variable lies in the fact
that its subscript need not be a numeric constant, but can be
another variable, or in fact any valid PL/M expression. Thus the
following program will sum the elements of the array NUMBERS:

PL/M PROGRAMMING ' PAGE 24
Arrays

DECLARE SUM BYTE;
DECLARE NUMBERS (1¢) BYTE;
DECLARE I RBRYTE;

SUM = @;
DO I = @ TO 9:

SUM = SUM + NUMBERS(I):
END:

EOF
Subscripted variables are permitted anywhere PL/M permits a

simple variable, with the one exception theat it is not legal to use
one as the control variable of an iterative do-aroup.

PL/M PROGRAMMING PAGE 25
Declarations

9. DECLARATION STATEMENTS

9,1 Objects and Attributes

The purpose of a declaration is to introduce some computational
entity (e.g. a procedure, label, or data element), give it a name,
and describe some of its attributes. Leaving aside the declaration
of procedures, which will be discussed in section 11, declarations
are done by means of the declaration statement. The simplest form
of a declaration statement is

DECLARE object-name attribute-1 attribute-2 ... ;

where the attributes are things like (in the <case of wvariables)
type, size, addressing method, and initial value. ULet us look at
the declaration of a typical array:

DECLARE FWD (100) BYTE;

Here 1is a name (FWD), a size attribute (1086), and a type attribute
(BYTE) . Certain syntactic rules govern the ordering of attributes;
in the example above, the size attribute must precede the type
attribute. (A1l such rules are explicitly gathered in one place at
appendix A.)

9.2 The INITIAL Attribute

The values of variables may be initialized in their declaration
statements wusing the INITIAL attribute. This attribute takes the
form

INITIAL (constant-list)

where the ‘constant-list’ is a sequence of constants, separated by
commas. This attribute must immediately follow the type attribute
(BYTE or ADDRESS) in the declaration statement.

The purpose of the INITIAL attribute is to pre-set the values
of the variables named. The variable or array is allocated storage
as if the INITIAL attribute were not present in the declaration.
Then the values given in the INITIAL attribute are placed in memory
at program load-time, before the program starts execution.

The wuser should exercise caution in use of the INITIAL
attribute. He should be aware, for example, that neither procedure
entry nor program restart will cause any variable initialization --
@ complete program re-load is required. 1In fact, use of the INITIAL
attribute is hardly ever recommended; for ROM-based systems at
least, the DATA declaration will be far more useful.

PL/M PROGRAMMING PAGE 26
Declarations

The following are valid declarations using the INITIAL
attribute:

DECLARE X BYTE INITIAL (18);
DECLARE Y(10) BYTE INITIAL (1,2,3,4,5,6,7,8,9,10);
DECLARE 2(10@8) BYTE INITIAL(SHORT , “STRING’, 4FH):
DECLARE U(1060) ADDRESS INITIAL (3, 4, 5350);

DECLARE (Q, R, S) BYTE INITIAL (8, 1, 2);

The number of bytes required to hold the list of constants need
not correspond to the 1length declared for the variable. The
constants are placed in memory without truncation, sterting at the
first byte allocated by the DECLARE statement. It is illegal,
however, to specify INITIAL attributes which overlay each other.

9.3 The DATA Declaration

Suppose you want to declare an array and give it initial
values, and vyou want those values never to change with program
execution. If your system provides different memories for program
code storage and data storage, the answer might be to store this
particular array with the read-only program code rather than with
the read-write variables. PL/M gives you this kind of control over
storage allocation with the DATA declaration. The form is

DECLARE identifier DATA (constant-list);
As an example of this construction, consider
DECLARE MESSAGE DATA (°8080 PL/M’);

The effect of a DATA declaration is similar to that of an array
declaration with an INITIAL attribute, but there are differences in
form. No data-type specification appears in the declaration; type
BYTE 1is forced. No explicit array size appears in the declaration;
the size is implicitly specified by the length of the constant-list.
DATA identifiers are used just 1like subscripted BYTE array
identifiers, with one exception: they should never appear on the
left-hand side of an assignment operator.

9.4 Declaration Elements

A separate declaration statement is not required for each and
every declaration. Instead of writing the two declaration

statements

DECLARE CHR BYTE INITIAL ('A7);
DECLARE FAB ADDRESS:

we may write both declarations in a single declaration statement,
like this:

PL/M PROGRAMMING PAGE 27
Declarations

DECLARE CHR BYTE INITIAL ('A"), FAB ADDRESS;

This declaration statement contains two "declaration elements",
separated by the comma. Every declaration statement contains at
least one declaration element; if it contains more than one, they
are separated by commas.

A declaration element is a textual unit defining one nawme, oOr
one list of names, as in

DECLARE HARE BYTE, (HOUND, HORN) ADDRESS;

The declaration elements appearing in a single statement are
completely independent of each other; it is as if they had been
declared in different statements. The only question is whether the
reserved word DECLARE shall be repeated. This is a gquestion of
style, not substance.

PL/M PROGRAMMING , PAGE 28
Sort Program

10. A SORTING PROGRAM

Now we construct an example program using expressions,
do-groups, and subscripted variables. Suppose a vector A contains a
set of numbers in an arbitrary order, and we wish to sort them into
ascending porder.

/* INITIAL ORDERING OF ‘A" IS ARBITRARY */

DECLARE A(190) ADDRESS INITIAL
(33, 10, 2000, 400, 410, 3, 3, 33, 500, 1999);

/* BUBBLE SORT */

/* SWITCHED = (BOOLEAN) HAVE WE DONE ANY
SWITCHING YET THIS SCAN? */
DECLARE (I, SWITCHED) BYTE, TEMP ADDRESS;

SWITCHED = 1; /* SWITCHED=TRUE MEANS NOT DONE YET */
DO WHILE SWITCHED;

SWITCHED = @; /* BEGIN NEXT SCAN OF A */
DO I = 60 TO 8;
IF A(I) > A(I+]1) THEN

\

DO; /* FOUND A PAIR OUT OF ORDER */
SWITCHED = 1; /* SET SWITCHED = TRUE */
TEMP = A(I); /* SWITCH THEM INTO ORDER */

A(I) = A(I+l);
A(I+1) = TEMP;
END;
END;
/* HAVE NOW COMPLETED A SCAN */

END /*WHILE*/;
/* HAVE NOW COMPLETED A SCAN WITH NO SWITCHING */

EQF

§

This program scans the vector A, comparing each adjacent pair
of elements. When it finds:a pair out of order, it swaps them. It
does this repeatedly, until it completes an entire scan of A without
having swapped any pair. Then it is done.

The variable SWITCHED keeps track of whether we have done a
swap vyet, this time through the array. So we zero it each time we
start a new scan, and set it each time we do a swap.

Study this program until you understand it. It is the basis of
later examples.

PL/M PROGRAMMING PAGE 29
pProcedures

11. PROCEDURES

A ‘procedure’ is a section of PL/M code which 1is declared
without being executed, and then “called’” from other parts of the
program. The call is in fact a remote execution of the procedure
out of normal sequence: program control is transferred from the
point of ceall to the procedure code, the procedure is executed, and
when the procedure exits, program control is passed back to the

point of the call.

The use of procedures forms the basis of modular programming,
facilitates making and using program libraries, eases programming
and documentation, and reduces the amount of object code generated
by a program. The following 2 sections tell how to define (declare)
procedures, and how to invoke (call) procedures.

11.1 Procedure Declarations

A procedure must be defined before it is used. That 1is, a
‘procedure declaration’” for a procedure must occur earlier in the
program text than any reference to that nprocedure. A procedure

declaration consists of 4 parts: the procedure name, the
specification of any formal parameters, the tvpe of the returned
value (if any), and the procedure body (the code itself). These
elements take the following form:

name: PROCEDURE (argument-list) type;
statement-1;
statement-2;

statement-n;
END name;

The name is a PL/M identifier, which is hereby associated with this
procedure. From this point in the program forward, the procedure
can be invoked by simply mentioning its name.

The argument-list takes the form _

(arg-1, arg-2, ,.., arg-n)

where arg-1 through arg-n are PL/M identifiers. Such identifiers
are called “formal parameters’; they hold values passed to the
pProcedure from the point of its invocation. (PL/M procedures are

thus of the ™"call by value" variety.) Each of these formal
Parameters must appear 1in a declaration statement within the
Procedure body, so its type and size are defined. The argument-list
may be omitted altogether if no parameters are passed to the
Procedure,

The type of the procedure is either BYTE or ADDRESS, if the
Procedure returns a value to the point of call. If no value is

PL/M PROGRAMMING PAGE 30
Procedures

returned, the type is omitted from the procedure declaration. The
procedure type defines the precision of the value returned so that
proper type conversion takes place when the procedure is invoked as
part of an expression,

The execution of a procedure is terminated by execution of a
RETURN statement within the procedure body. The RETURN statement
takes one of the two forms

RETURN;
RETURN expression;

The first form is used if no value is returned by the procedure (and
hence no ©ovrocedure type is declared). The second form is used if
the procedure type is BYTE or ADDRESS, in which case the value of
the expression in the RETURN statement 1is brought back to the
calling point.

The statements within the procedure bodvy may be any valid PL/M
statements, including nested procedure declarations and invocations.
Here are some sample procedure declarations:

AVG: PROCEDURE (X, Y) ADDRESS;
DECLARE (X, Y) ADDRESS;
RETURN (X + Y)/2;

END AVG;

AQUT: PROCEDURE (ITEM);
DECLARE ITEM ADDRESS;
IF ITEM >= @FFH THEN OUTPUT(3) = OFFH;
ELSE OUTPUT(3) = ITEM;
RETURN;
END AOUT;

DECLARE GLOBALSSUM ADDRESS;
SUMSQUARE: PROCEDURE (ARG);

GLOBALSSUM = GLOBALSSUM + ARG*ARG;
END;

You may have noticed that there is no RETURN statement in the 1last
example. This 1s a legal construction; there is an implied RETURN
at the END of any procedure body. Of <course, 1if the procedure
returns a value, there must be an explicit RETURN to specify it.

A final note: procedures are not allowed to be recursive. This
means that a procedure may not <call 1itself, and further that
procedures may not cell each other circularly.

PL/M PROGRAMMING ' PAGE 31
Procedures

11.2 Procedure Calls

Procedures can be invoked (i.e. executed, or activated) only
following their declaration in the oprogram text. There are two
forms of procedure call, depending on whether the procedure returns
a wvalue. If a procedure does not return a value, then the
procedure-type will be absent from its declaration, and the form of
its call is

CALL procedure-name (argument-list);

which is a self-contained PL/M statement. If 2 procedure returns a
value, then its declaration contains a procedure-type, and the form
of its call is

procedure-name (argument-list)

which is an operand or term to be used in an expression, just as a
variable-name would be used.

In both forms of procedure-invocation, the elements of the
argument list are called “actual parameters’, to distinguish them
from the “formal parameters” of the procedure declaration. At the
time of the call, each actual paremeter 1is evaluated, and its
resulting value is assigned to the corresponding formal parameter in
the procedure declaration. Then the procedure body is executed.
Actual parameters can be variable-names, constants, or in fact any
PL/M expression. If the procedure 1is declared without a formal
parameter list, then the actual parameter 1list 1is absent in "the
call.

Given the procedure declarations in section 11.1 for AVG, AOUT,
and SUMSQUARE, the following are valid procedure calls:

X = AVG (X, Y);
CALL AOUT (X);
CALL SUMSQUARE (4);
CALL SUMSQUARE (Y + 3);
CALL AOUT (1 + AVG (X, 4));
DO WHILE AVG(X, Y) < MAX;

X = X + XDEL;

Y = Y + YDEL;
END;

Whenever there is a disagreement in type between. an actuval
Perameter and a formal parameter, automatic type-conversion takes
Place at the point of call. That is, an actual parameter value of

PL/M PROGRAMMING ' PAGE 32
Procedures

type BYTE will be extended with high-order zeros when it is assigned
to a formal parameter of type ADDRESS, and an actual parameter value
of type ADDRESS will have its high-order 8 bits truncated when it is
assigned to a formal parameter of type BYTE. The same kind of
automatic type-conversion happens in two other cases of type
disagreemerft: (1) when there is a disagreement between the value
returned by a BYTE or ADDRESS procedure, and its use at the point of
call; (2) when there is a disagreement between the value of a RETURN
expression, and the type of the procedure.

11.3 Example

As an example of procedure declaration and call, 1let us
consider the sorting program given earlier in section 106. We will
take out the segment of the program which actually does the sorting,
and declare it as a procedure. We will give this procedure a single
formal parameter: the 1length of the array to be sorted. The
procedure will return a value: the number of switches required to
sort the array.

PL/M PROGRAMMING PAGE 33
procedures

/* INITIAL ORDER OF A IS ARBITRARY */

DECLARE A(10) ADDRESS INITIAL
(33, 106, 2000, 4006, 410, 3, 3, 33, 560, 1999);

' /* BUBBLE-SORT DECLARATION */
SORT: PROCEDURE (N) ADDRESS;

/* N = LENGTH OF A
COUNT = NR. OF SWITCHES PERFORMED TO-DATE
SWITCHED = (BOOLEAN) HAVE WE DONE ANY SWITCHING
YET ON THIS SCAN? *x/
DECLARE (N, I, SWITCHED) BYTE,
(TEMP, COUNT) ADDRESS;

SWITCHED = 1; /* SWITCHED=TRUE MEANS NOT DONE YET */

COUNT = 8;
DO WHILE SWITCHED;

SWITCHED = 0; /* BEGIN NEXT SCAN OF A */
DO I = @ TO N-2;
IF A(I) > A(I+1) THEN

DO; /* FOUND A PAIR OUT OF ORDER */
COUNT = COUNT + 1;
SWITCHED = 1; /* SET SWITCHED = TRUE */
TEMP = A(I); /* SWITCH THEM INTO ORDER */
A(I) = A(I+1);
A(I+1) = TEMP;
END; .
END;

/* HAVE NOW COMPLETED A SCAN */

END /*WHILE*/;
/* HAVE NOW COMPLETED A SCAN WITH NO SWITCHING */

RETURN COUNT;

END SORT;
/* BUBBLE-SORT INVOCATION */

DECLARE NSWITCH ADDRESS;
NSWITCH = SORT (18);

EOF

Compare this procedure with the program of section 10, which
was a one-shot program. If we wanted to write a program in which
the array got mixed up, sorted, mixed up, and sorted cyclicly, the
Program of section 18 would be no help. It would sort the array
once and quit. But here, declared as a procedure, we can invoke it
4S8 many times as we want the array sorted.

PL/M PROGRAMMING PAGE 34
Pointers and Indirect Reference

12. POINTERS AND INDIRECT REFERENCES

Sometimes a direct reference to a PL/M data element 1is either
impossible or inconvenient. This happens, for example, when the
memory address of a data element must remain unknown until it is
computed ®t run-time. In such cases it may be necessary to write
PL/M code .to manipulate the addresses of data rather than the data
themselves, considering that the addresses "point to" the data.
Such pointers have been called "indirect addresses", ‘"references",
and "pointers". In PL/M, the double-byte data type is called
ADDRESS, to suggest this use. A PL/M programmer handles pointer
computations using the language facilities described in this
section.

12.1 Based Variables

A ‘based variable’ is a variable which is pointed to by another
variable, called 1its ‘base’. A based variable is not allocated
storage by the compiler; its value is calculated at run-time by an
indirect access through its base. A based variable is declared by
first declaring its base, which must be of type ADDRESS, and then
declaring the based variable itself:

DECLARE ITEM$SPOINTER ADDRESS;
DECLARE ITEM BASED ITEMSPOINTER BYTE;

From this point in your program forward, whenever you write “ITEM’
you are really saying ‘the BYTE value pointed to by the current
value of ITEMSPOINTER . This means that the secuence

ITEMSPOINTER = 34AH;
ITEM = 77H;

will load the BYTE velue 77 (hex) 1into the memory 1location 34A
(hex) .

A varieble is made BASED by the occurence of a base-attribute
in its declaration. A base-attribute takes the form

BASED identifier

where the identifier names the base, or ©pointer wvariable. Unlike
other declaration attributes, this base-attribute must immediately
follow the name of the based variable in its declaration, as in the
following examples:

DECLARE X BASED A BYTE;
DECLARE (Z BASED ZA, Y BASED YA) ADDRESS;
DECLARE (Q BASED QA) (100) BYTE;

In the first example, 2 byte variable called X 1s declared.
The declaration implies that X will be found at the location given

PL/M PROGRAMMING PAGE 35
pointers and Indirect Reference

by the run-time values of the ADDRESS variable A (declared
elsewhere).

The second example declares 2 based variables, both of type
ADDRESS. The third example defines an array called Q based at OQA.
The compiler will not allocate any storage to O at compile time; the
size attribute (100) merely provides values for the built-in
functions LENGTH and LAST, and documents the intended use of Q.

Based variables may be subscripted like any other variables.

12.2 The Dot Operator

Based variables give us a way of talking about a referent,
given its pointer; now we need a way of constructing a pointer,
given the referent. This is the dot operator: the memory address of
a variable 1is designated by preceding the variable-name with a dot
character. Thus, the expressions

.A and .B(5)

yield the address of A, and the address of B(5), respectively. If A
is a BYTE array, the value of .A(8)+5 is the same as .A(5); if A is
an ADDRESS array, the value of .A(f)+18 is the same as .A(5). You
can use the dot operator on a based variable; the result is simply
the value of the base.

In general, the dot operator takes the forms

.variable
.constant

. (constant)

. (constant-1list)

This means the dot operator can take a constant for an argument, as
well as a variable. In this case memory storage is allocated for

the constant itself, and the dot operator returns a pointer to it.
For example, the construction

.37

evaluates to an address which points to a memory location containing
the number 37. Likewise,

. "MESSAGE’
returns a pointer to the first character, M, of the ASCII string
M-E-S-S-A-G-E. A list of constants separated by commas and enclosed
by parentheses may be dotted like this:

.(P2H, 'MIXED , ODH, @AH, °'CONSTANTS , @3H)

PLL/M PROGRAMMING PAGE 35
pPointers and Indirect Reference

by the run-time values of the ADDRESS variable A (declared
elsewhere).

The second example declares 2 based variables, both of type
ADDRESS. The third example defines an array called Q based at QA.
The compiler will not allocate any storage to QO at compile time; the
size attribute (100) merely provides values for the built-in
functions LENGTH and LAST, and documents the intended use of Q.

Based variables may be subscripted like any other variables.

12.2 The Dot Operator

Based variables give us a way of talking about a referent,
given 1its pointer; now we need a way of constructing a pointer,
given the referent. This is the dot operator: the memory address of
a variable 1is designated by preceding the variable-name with a dot
character. Thus, the expressions

.A and .B(5)

yield the address of A, and the address of B(5), respectively. If A
is a BYTE array, the value of .A(@8)+5 is the same as .A(5); if A is
an ADDRESS array, the value of .A(9)+18 is the same as .A(5). You
can use the dot operator on a based variable; the result is simply
the value of the base.

In general, the dot operator takes the forms

.variable
.constant

. (constant)

. (constant-list)

This means the dot operator can take a constant for an argument, as
well as a variable. 1In this case memory storage is allocated for

the constant itself, and the dot operator returns a pointer to it.
For example, the construction

.37

evaluates to an address which points to a memory location containing
the number 37. Likewise,

. "MESSAGE’
feturns a pointer to the first character, M, of the ASCII string
M-E-S-S-A-G-E. A list of constants separated by commas and enclosed
by parentheses may be dotted like this:

.(02H, "MIXED , ODH, @AH, 'CONSTANTS , @3H)

PL/M PROGRAMMING PAGE 36
Pointers and Indirect Reference
These last two constructions are useful for passing parameters to
procedures. A PRINT procedure, for instance, might take 2 formal
parameters, a pointer to a message and a character count of 1its
length. It could then be called this way:
CALL PRINT (14, . STACK OVERFLOW');
An address reference made with the dot operator 1is wvalid

anywhere a PL/M expression is valid.

12.3 Example: Bubble-Sort

Let us return to the bubble-sort procedure that has been a part
of our theme, last seen in section 11.3. There it would sort only
the array A, which was declared globally. Would it not be more
useful, 1if it would sort any array we cared to hand it? Passing an
entire array is clearly awkward; getting it back is even more so,
since a procedure can return at most one value. So pass the

procedure a pointer to the array; can sort the
array where it already sits in
data is required in the procedure

More abstractly, what we are
pointer to 1its parameter,
Inside the procedure, the formal
pointer
base for a based variable.

then the procedure
memory, in place, and no motion of
call and return.

doing is passing the procedure a

rather than the value of its parameter.

parameter corresponding to this

must be declared type ADDRESS, and then it can be used as a
In the case of our

bubble-sort example

this strategy results in a program like this:

PL/M PROGRAMMING PAGE 37
Pointers and Indirect Reference

/* BUBBLE-SORT DECLARATION */

SORT: PROCEDURE (PTR, N) ADDRESS;

/* N = LENGTH OF ARRAY TO BE SORTED
PTYR = MEMORY ADDRESS OF ARRAY TO BE SORTED
COUNT = NR. OF SWITCHES PERFORMED TO-DATE
SWITCHED = (BOOLEAN) HAVE WE DONE ANY SWITCHING

YET ON THIS SCAN? */

DECLARE PTR ADDRESS, A BASED PTR ADDRESS;

DECLARE (N, I, SWITCHED) BYTE,
(TEMP, COUNT) ADDRESS;

SWITCHED = 1; /* SWITCHED=TRUE MEANS NOT DONE YET */

COUNT = @:
DO WHILE SWITCHED:

SWITCHED = 0; /* BEGIN NEXT SCAN OF ARRAY */

DO I =9 TO N-2;
IF A(I) > A(I+1) THEN

DO; /* FOUND A PAIR OUT OF ORDER */
COUNT = COUNT + 1;
SWITCHED = 1; /* SET SWITCHED = TRUE */
TEMP = A(I); /* SWITCH THEM INTO ORDER */
A(I) = A(I+1);
A(I+l1) = TEMP;
END;
END;

/* HAVE NOW COMPLETED A SCAN */

END /*WHILE*/;
/* HAVE NOW COMPLETED A SCAN WITH NO SWITCHING */

RETURN COUNT;

END SORT;

/* BUBBLE-SORT INVOCATION */

DECLARE B(18) ADDRESS INITIAL
(33, 10, 20090, 400, 410, 3, 3, 33, 560, 1999);
DECLARE C(5) ADDRESS INITIAL
(‘A°, 32, @FFFFH, 22Q, 'EW’);
DECLARE (N1, N2) ADDRESS;

N1l = SORT (.B, LENGTH(B));
N2 = SORT (.C, LENGTH(C)):;
EOF

Conceptually, the SORT procedure has a single argument: the
array to be sorted. We have implemented this idea by giving the
Procedure 2 formal parameters: a pointer to tell where to find the

PL/M PROGRAMMING PAGE 38
Pointers and Indirect Reference

array, and a count to tell its size. Compare this formulation with
the bubble~sort procedure of section 11.3, which only sorts one
array, the one it already knows about, array A. Use of the old
procedure to sort a different array B means copying B to A, calling
the SORT procedure, then copying A back to B again. Our new SORT
procedure cdan sort any array of any length anywhere in memory: we
just tell where and how big.

12.4 Example: String Comparison

This is an example of character-string handling. We declare a
procedure EQUAL, which compares two character strings for eguality.
It is a typed procedure that returns a value TRUE (= @FFH) 1if the
strings match, FALSE (= @) if they don’'t. EQUAL takes two
parameters: pointers to the two strings to be compared. Each of the
strings must be terminated by a final byte of @FFH. ‘

EQUAL: PROCEDURE (PTR1l, PTRZ2) BYTE;:

DECLARE (PTR1, PTR2) ADDRESS;

DECLARE (STRING1 BASED PTRI,
STRING2 BASED PTR2) BYTE;

DECLARE I ADDRESS, (J1, J2) BYTE;

Jl, J2, I = @;

DO WHILE J1=J2;
IF J1=@FFH THEN RETURN @FFH;
J1 = STRINGI(I);
J2 = STRING2(I);

I = I+1;
END;
RETURN 0:

END EQUAL;

The idea of this program is to use a do-while loop to keep searching
down the strings until either a mismatch or the end of a string is
encountered. A mismatch will terminate the do-while, and execution
will fall through to the RETURN § statement; but the end of a string
will provoke a return out of the middle of the do-while.

PL/M PROGRAMMING PAGE 39
Labels

13. STATEMENT LABELS AND GO-TO’S

13.1 Label Names

Statement$s (or groups) may be labeled for identification and
reference. A labeled statement takes the form

LABEL-1: LABEL-2: ... LABEL-N: STATEMENT;

where the label-i are vaild PL/M identifiers. Any number of 1labels
may precede the PL/M statement. Here are some examples of labeled
statements:

LOOP: X = X+1;
Ll: CLEANSUP: I = 0;
A label may also be a number. Such a label is like the 'o;g'
statement of many assemblers. The statement

30: Y = X-5;

specifies that the object code for this statement 1is to begin at
memory location 368. No more than one numeric label should precede a
statement; and when symbolic labels are used in conjunction with a
numeric label on the same statement, the numeric label should appear
first. Example:

128: FISH: X = (X + 2)*3;

The symbolic form of a label has no effect on the origin of
code. Its purpose is to be a documentation and debugging aid, and
to provide a target for GO TO statements.

Labels may be declared, 1like wvariables, in declaration
statements. Such explicit label declaration 1is not usually
required; normally one simply uses labels as described 1in this
section, and no problems arise. Label declaration is discussed at
some length in section 15.3.

13.2 GO TO Statements

A GO-TO statement stops the normally sequential order of
program execution by transferring control directly to its “target’.
Seguential execution then resumes, beginning with the target
Statement. There are three distinct forms for the PL/M GO TO
Statement:

GO TO label-name;
GO TO number;
GO TO variable-name;

PL/M PROGRAMMING PAGE 44
Labels

In the first form, the label-name is an identifier which appears as
a label 1in a 1labeled statement. The effect of the GO TO is a

transfer of program control directly to the labeled statement. In
the second form, the number 1is an absolute memory address, and
program control is transferred directly to that address. In the

third form} the variasble-name 1is that of a variable containing a
pre-computed memory address; control passes directly to this
absolute memory address.

These last two forms of the GO-TO are extremely dangerous, as
they fail to guarentee the existence of executable code at the GO-TO
target. 1In general, one should never use a numeric GO-TO if a
symbolic GO-TO will work.

The reserved word GO TO can also be written GOTO, without the
embedded blank.

Discussion of 1label scope, which affects the 1legality of
certain GO-TO’s, and questions of up-level transfers, are postponed
to section 15 (Block Structure and Scope).

As a final note on labels: you are encouraged to use
IF-THEN-ELSE and DO-group constructs instead of labels and GO TO's
wherever possible. The effect in general will be better object code
and more readable programs.

PL/M PROGRAMMING PAGE 41
Literally Declaration :

14. COMPILE-TIME MACRO PROCESSING

The LITERALLY declaration defines a macro for expansion at
compile-time. An identifier 1is declared to represent a character
string, which 1is then substituted for each occurence of the
identifier inrsubsequent text. The form of the declaration is

DECLARE identifier LITERALLY ’string’;

where the identifier is any valid PL/M identifier, and the string is
a sequence of arbitrary characters from the PL/M set, not exceeding
255 in length, enclosed in apostrophes. The following program
illustrates the use of this macro facility.

DECLARE LIT LITERALLY ‘LITERALLY’,
DCL LIT ‘DECLARE’;

DCL TRUE LIT °“@FFH’, FALSE LIT ‘0°;

DCL FOREVER LIT ‘WHILE TRUE’;

DCL (X, Y, Z) BYTE;

X
DO FOREVER:

Y = Y+1:;

IF Y > 10 THEN HALT;
END;

EOF

TRUE;

The first declaration of this program defines abbreviations for
the reserved words LITERALLY and DECLARE, which are then used
throughout the program. The second declaration defines the boolean
values TRUE and FALSE in a manner consistent with the way PL/M
handles relational operators (see section 5.3). This often makes a
program more readable.

The DO FOREVER statement in the program body first expands to
DO WHILE TRUE. The macro expansion of TRUE then yields DO WHILE
OFFH; and since OFFH has a rightmost bit of 1 (see section 7.1), the
effect 1is an endless loop, terminated only by execution of the BALT
statement within the loop.

Another use of the LITERALLY declaration is the decleration of
parameters which may be fixed for one compilation, but may change
from one compilation to the next. Consider the program below:

PL/M PROGRAMMING PAGE 42
Literally Declaration

DECLARE BUFFERSSIZE LITERALLY °300°,
PBASE LITERALLY “48060°,
SUPERVISOR LITERALLY “40H";

DECLARE PRINTSBUFFER (BUFFERS$SIZE) ADDRESS;

PBASE:
PRINTBUFFER (BUFFERSIZE-18) = ‘G

I

~s

IF ERROR THEN GO TO SUPERVISOR;

EOF

A future change to BUFFERSSIZE can be made in one place at the first
declaration, and the compiler will propagate it throughout the
program during compilation. Thus the programmer is saved the
tedious and error-prone process of searching his program for the
occurences of "3¢8" that are buffer-size references, and not some

other 300 s.

Likewise, the starting 1location of the program (and any
references to it from elsewhere) can be changed with a modification
in the PBASE declaration. The expansion of this macro in line 5 of
our program will create a numeric label; other references (not shown
above) might expand into absolute GO TO's, like the statement °GO TO
SUPERVISOR .

PL/M PROGRAMMING PAGE 43
scope

15. BLOCK STRUCTURE AND SCOPE

PL/M is a "block structured" language. This means that certain
portions of programs, namely "blocks", can be written so there is no
unwanted interaction between the block and its environment. This
desirable situation stems mainly from the concept of "scope":
entities which are declared within a block are inaccessible to
statements or declarations outside the block; and a block may shield
itself from the influence of enitities declared outside the block by
suitable declarations inside the block. The use of the same
identifier for different objects, one inside a block, one outside
the block, creates no difficulty.

For example, there are two blocks in the following program:

DECLARE (A, B) BYTE;
A = 3;
DO;
DECLARE C BYTE;
C = A-17;
END;
B = A+200;
EOF

The DO-END group constitutes a block, as does the entire program.
The "scope" of the variables A and B comprises the entire program,
because they were declared in the outermost block. The scope of
variable C 1is the DO-END group only, because C was declared within
that block. This means that the variables A and B may be -used
anywhere in the program, while use of the variable C is restricted
to the DO-END block. A reference to C located outside the DO-END
group will be flagged by the compiler as an undefined identifier;
outside its scope, the variable C simply does not exist.

15.1 How Scope is Defined

A "block" is any do-group, any procedure body, or the entire
program. Each block limits the scope of those identifiers declared
within it; they will be unknown outside the block. Given an
identifier, 1its scope 1is determined by finding the point of its
declaration, and looking forward-and backward in the program text
("outward" from the declaration), to find the innermost block
containing the declaration. The exact scope of the identifier then
begins with its declaration, and ends with the end of the block.

The scope of an identifier, so defined, can have "holes" in it.
If the scope contains an inner block, and the inner block contains a
declaration that redefines the same identifier, then the scope of
that inner declaration creates an area in which the outer
declaration is temporarily inoperative -- masked by the inner
declaration.

PL/M PROGRAMMING PAGE 44
Scope

Study of the following example will be instructive:

@041 DECLARE (A, B) ADDRESS INITIAL (1081, 1@2);:
po02
2003 P: PROCEDURE (A) ADDRESS;
o004 DECLARE A BYTE;
0005 RETURN (A*A + B):
8006 END P;
pea7
9008 A = P(2);
ponI9
pa1o DO;
go11 DECLARE P(10) ADDRESS, I BYTE;
#0112 DO I = 6 TO 9;
9813 P(I) = 500+1;
9014 END;
80815 A = P(2);
3016 END;
90817
2018 EOF
First let us consider the scope of the variable 1I. I is

declared on line 11; the innermost block encompassing this
declaration is the DO-END group comprising lines 10 to 16. Thus the
scope of the variable I begins with its declaration on line 11, and
ends with the end of the block on line 16. :

The scope of the variable B begins with its declaration on line
1, and ends with the end of the program on line 18 -- that is to
say, the scope of B is the entire program. The case of the variable
A 1is similar, since it is declared simultaneously with B, but there
is an important difference. The procedure P, whose declaration
begins on line 3, contains the declaration of another variable A,
whose scope is the body of the procedure P: line 3 to 1line 6. So
there are two distinct variables named A in this program, declared
at two different block levels. The outer A°s scope fails to be
continuous; it extends from 1line 1 to line 2, and from line 7 to
line 18. It is interrupted by the scope of the inner A, which
occupies 1lines 3 to 6. Thus the multiplication on line 5 uses the
inner A, the formal parameter of the procedure P; and the assignment
statement on 1line 8 assigns a new value to the outer A, the A

declared on line 1.

The scope of B is not interrupted by any inner declaration in
the procedure P. That is why the reference to B on line 5, although
within the procedure, is nontheless a reference to the global B
declared in line 1.

Let us now consider the scope of the procedure P. Its
declaration begins on line 3, and the innermost block encompassing
this declaration is the entire program. The scope of the procedure

PL/M PROGRAMMING PAGE 45
Scope

is thus the entire program -- with one exception. Notice that the
identifier P is declared again at 1line 11, this time not as a
procedure, but as a l0-element array of addresses. As in the case
of the identifier A, this double declaration presents no difficulty
because the declaration on 1line 11 is contained within an inner
block, in this case the DO-END group encompassing lines 16 to 16.
The scope of the array P is thus from line 11 to line 16. Without
this inner declaration of the identifier P, the scope of the
procedure P would be the entire program; with it, the scope of the
procedure is only from line 3 to line 18, and from line 17 to 1line

18.

\ The double declaration of P -~ once as a procedure, once as an
array =-- has a curious consequence. The two statements at lines 8
and 15, although lexically identical, have different meanings. Line
15 falls within the scope of the array declaration on line 11, and
thus sets the variable A equal to the third element of the array P
(which the ‘iteration of lines 12 to 14 has left equal to 5¢2). On
the other hand, line 8 falls outside the scope of the array P, and
within the scope of the procedure P. Thus the assignment of line 8
invokes procedure P with an actual parameter of 2; within the
procedure body the inner variable A becomes equal to 2; the value
2*2 + B, or 106, is returned as the value of the procedure call; and
the outer A gets assigned the new value 106.

15.2 What is Subject to Scope

Variable names, array names, and data names have scope, as
explained in the preceding section. The rules explained there
apply, with one anomaly: the innermost block encompassing a
variable, array, or data declaration must not be a DO-WHILE, a
DO-CASE, or an iterative DO. Declarations so placed are illegal.

Procedure names have scope, following the rules explained 1in
the preceding section. The anomaly just described holds for
procedure names also: the innermost block encompassing a procedure
declaration must not be a DO-WHILE, a DO-CASE, or an iterative DO.

Macro names defined in LITERALLY declarations also have scope,
~according to the rules of the preceding section. Here again, the
innermost block encompassing a LITERALLY declaration must not be a
DO-WHILE, a DO-CASE, or an iterative DO.

Labels are also identifiers, and as such have scope. But
unlike variables, procedures, and macros, it is not usually required
to explicitly declare label names. The first use of an wundeclared
label 1is itself an implicit declaration of the label; and this
implicit declaration governs the scope of the label according to the
rules of the preceding section. But there are times when a
Programmer must override these implicit declarations with his own
explicit declarations. These issues are discussed more completely
in the following section.

PL/M PROGRAMMING PAGE 46
Scope

15.3 Scope of Labels

Just as variables and procedures have an explicit scope, The
symbolic form of a statement label has an implied scope. This scope
can be made explicit by a label-declaration. The form of the
label-declaration element conforms to one or the other of

DECLARE identifier LABEL;
DECLARE (identifier-1l, ... identifier-n) LABEL;

Such a declaration says that the label or set of 1labels will be
defined at the block level of the declaration. This explicit label
declaration is necessary only if the implied declaration does not

satisfy the programmer ‘s intention.

Suppose we have a program containing the following statement:

LOOP: X = X+1;
This program will be compiled as if we had written

DECLARE LOOP LABEL;
LOOP: X = X+1;

where the implicit 1label declaration immediately precedes the
occurence of the 1label. Mostly this turns out to be exactly what
one would wish for; but here is an example which shows why the
explicit declaration is sometimes required.

X = X+1; /* START OUTER BLOCK */

DO; /* START INNER BLOCK */

GO TO EXIT;

END; /* END INNER BLOCK */

EXIT: HALT;
EOF /* END OUTER BLOCK */

Our obvious intention is to branch from the inner block to the
statement 1labeled EXIT at the end of the program. But according to
the implicit declaration rule for labels, we could have written

equivalently

PL/M PROGRAMMING PAGE 47
Scope

X = X+1; /* START OUTER BLOCK */
‘6; /* START INNER BLOCK */
6ééLARE EXIT LABEL;
GO TO EXIT;
END;.. /* END INNER BLOCK */

DECLARE EXIT LABEL;
EXIT: HALT;
EOF /* END OUTER BLOCK */

At the first use of EXIT, the implicit declaration limits the scope
of the 1label to the do-group. So at the second occurence of EXIT,
we are outside that scope, EXIT 1is again undefined, and a new
implicit declaration will occur. Now there are two labels due to
implicit declarations, an inner and an outer. Amusingly enough, the
inner label 1is wundefined (although declared), and the GO-TO
statement has nowhere to go to! To accomplish the original purpose,
we should write

DECLARE EXIT LABEL; /* START OUTER BLOCK */

X = X+1:
DO:; . /* START INNER BLOCK */

GO TO EXIT;
END; /* END INNER BLOCK “*/
EXIT: HALT;
EOF /* END OUTER BLOCK */

Now everything will work out properly: at the first use of the
label (in the GO-TO statement) it has already been declared, and
this use lies within the scope of that declaration. The implict
declarations are suppressed, as they are not required; there is but
one label EXIT, and its scope is now the entire program, without
restriction. :

15.4 Use of Block Structure

Transfer of control from one block nesting level to another
should always be done by entering the block at its beginning and
leaving it at its end, or (for a procedure body) leaving by means of
a RETURN statement. ‘

For example, a GO-TO statement which contrives to jump into the
middle of a procedure body will leave the run-time pushdown stack in
an undefined state, and continued -execution of the program will
Produce wunpredictable results. A procedure body should be entered

PL/M PROGRAMMING PAGE 48
Scope

only by means of a call on the procedure.

A GO-TO leaving a procedure body has similar trouble with the
run-time stack, since it by-passes the orderly RETURN mechanism.
Because of this, it is illegal to write a GO-TO inside a procedure
that transfers control outside the procedure, unless its target is
at the outermost block level of the program. Such unconditional
up-level transfers are sometimes justified by the convenience of
global error exits, or by abort-and-restart conditions.

Need for inter-block GO-TO’s is quite rare, and programs may
often be rewritten to remove them, using alternative PL/M control
structures. Excessive use of GO-TO's will make programs hard to
debug and modify.

"It is recommended that, within any given block, all
declarations be put at the beginning of the block, preceeding
executable statements. The scope of identifiers so declared may
then be visualized as the extent of the entire block. This
simplification also prevents an important class of programming
errors: mistaken identification of the "innermost encompassing
block". ‘

Programmers find their work greatly facilitated by proper
layout of a program on the pages of its program listing. Blocks
(procedures, do-groups) are frequently set off by blank lines. The
body of each block is indented by a fixed number of spaces from the
code in which it occurs; thus the opering and closing lines of the
block are vertically aligned. When you look at a program listing it
should be easy to see its block nesting structure at a glance,
without reading the code in detail.

Block structure in a programming language provides the
opportunity to define truly independent program modules, letting the
compiler do the work of keeping them independent. Procedures can be
made independent of their environment (except for number and types
of parameters). Procedures can be moved from one program to
another, with no surprises resulting from new declaration conflicts.
Complete self-contained modules, together with conventional macro
definitions, can form a project or department library -- greatly
reducing program development time.

PL/M PROGRAMMING PAGE 49
Predeclared Variables and Procedures

l16. PRE-DECLARED VARIABLES AND BUILT-IN PROCEDURES

Pre-declared variables and built-in procedures are assumed to
be declared in an all-encompassing global block invisible to the
programmer. Such invisible declarations can be overridden by inner
declarations - which distinguishes these special identifiers from
reserved words. A list of these pre-declared identifiers 1is given
in appendix E.

16.1 INPUT and OUTPUT
The form of an input call is
INPUT (number)

It is used in expressions exactly as a BYTE procedure call would be,
and its value is the 8-bit quantity latched in the specified input
port of the CPU. The numeric constant argument must be in the range
@ — 255 for the 8086, and in the range @ - 7 for the 80@8.

The pseudo-variable OUTPUT always appears as the left part of
an assignment statement; elsewhere it is illegal. (In particular,
it never appears as the destination of an imbedded assignment.) 1Its
form is

OUTPUT (number) = expression;

where the numeric constant argument must be in the range 8 - 255 for
the 8088, and 1in the range @ - 23 for the 8088. 1Its effect is to
latch the 8-bit value of the expression into the specified output
port. v

In the 8080 CPU, there are 512 I/0 ports: 256 input ports and
256 ouput ports, each group being numbered @ through 255. These
physical (hardware) port designations are identical with the PL/M
constants that appear as arguments for INPUT and OUTPUT.

. In the 80068 CPU, there are 32 I1/0 ports, numbered @ through 31.
The first 8 of these are reserved for input, the remaining 24 for
ouput. The correspondence between these physical (hardware) port
designations, and the PL/M designations, 1is given by the table
below:

PL/M PROGRAMMING PAGE 590
Predeclared variables and Procedures

8008 physical PL/M
port number
@ INPUT (0)
1 INPUT (1)
2 INPUT (2)
7 INPUT(7)
8 OUTPUT (9)
9 OUTPUT (1)
30 QUTPUT(22)

31 OUTPUT (23)

16.2 LENGTH and LAST

PL/M has 2 built-in functions based on the declared sizes of
arrays. These functions take the forms

LENGTH (identifier)
LAST (identifier)

where "identifier" is any previously declared variable name, array
name, or data identifier. These forms may appear anywhere an
expression is allowed in a PL/M program. They evaluate to the
declared 1length of the variable, and the index of the final element
of the variable, respectively. The following program uses the LAST
function to set all the elements of a vector V to the constant 5:

DECLARE V(100) BYTE;
DECLARE I BYTE;

DO I = @ TO LAST(V);
V(I) = 5;
END;
EOF
 For any identifier VAR, LENGPH(VAR) = 1 + LAST(VAR), on the

condition that LAST 1is defined. LENGTH 1is defined for all
variables, no matter how declared, but LAST 1is not defined for
variables declared to have length zero. :

16.3 The Functions LOW, HIGH, and DOUBLE

Two built-in type-transfer procedures convert ADDRESS values to
BYTE values. They both return BYTE values, and take ADDRESS

PL/M PROGRAMMING PAGE 51
Predeclared Variables and Procedures

arguments, as follows:

LOW (expression)
HIGH (expression)

LOW returns the low-order byte of its argument; HIGH returns the
high-order byte of its argument.

A third type-conversion procedure, DOUBLE, converts a byte
value to an ADDRESS value by padding it on the 1left with a
high-order byte of zeros.

Calls to these three type-conversion procedures are valid
anywhere an expression 1is wvalid. They may never appear as the
destination of an assignment statement.

16.4 Sshift and Rotate Functions

16.4.1 BYTE Rotation Functions
Calls to the two functions ROL and ROR take the forms

ROL (expr-1, expr-2)
ROR (expr-1l, expr-2)

where both expr-1 and expr-2 must evaluate to BYTE guantities; a
single BYTE value is returned in both cases. ROL rotates expr-1 to
the left, the bit count of the rotation being given by expr-2. ROR
returns the corresponding right rotation. By ‘rotate’ we mean that
any bits falling off the end in the direction of the rotation, come
back in the other end. For example,

ROR(10011101B, 1) returns a value of 11061110B;
ROL(10611181B, 2) returns a value of £1110110B.

ROL and ROR have the side-effect of setting CARRY according to the
‘last bit rotated off the end and around. In the first example

above, CARRY will be set; in the second example, CARRY will be
cleared.

Important restriction: expr-2 must be non-zero.

16.4.2 CARRY-Rotation Functions
Calls to the two functions SCL and SCR take the forms

SCL (expr-1, expr-2)
SCR (expr-1, expr-2)

PL/M PROGRAMMING PAGE 52
Predeclared Variables and Procedures

where expr-2 must evaluate to a BYTE quantity, but expr-1 may be
either a BYTE value or an ADDRESS value. 1If it’'s of type BYTE, then
the function will return a BYTE value; if it’s of type ADDRESS, then
the functon will return an ADDRESS value.

The fir'st parameter (expr-1) is rotated left (SCL) or right
(SCR) according to a count given by the second argument (expr-2),
just as with ROL and ROR. But with SCL and SCR, the rotation
includes the CARRY bit: the bit rotated off one end of the argument
is rotated into CARRY; the o0ld value of CARRY is rotated into the
other end of the argument. 1In effect, SCL and SCR perform 9-bit
rotations on 8-bit arguments, and 17-bit rotations on 16-bit
arguments.

Suppose that CARRY is clear. Then SCL(10011101B, 1) returns
the value ©#61110810B, and sets CARRY as a side-effect. Similarly, if
CARRY starts out clear, then SCR(106011161B, 2) returns the wvalue
10100111B, and clears CARRY as a side-effect. The same principles
hold for 16-bit arguments. '

Important restriction: expr-2 must be non-zero.

16.4.3 Logical-Shift Functions
Calls to the two functions SHL and SHR take the forms

SHL (expr-1, expr-2)
SHR (expr-1, expr-2)

where expr-2 must evaluate to a BYTE quantity, but expr-1 may be
either a BYTE value or an ADDRESS value. If it’'s of type BYTE, then
the function will return a BYTE value; if it’s of type ADDRESS, then
the function will return an ADDRESS value.

The first parameter (expr-1) is shifted 1left (SHL) or right
(SHR) according to a bit count given by the second argument
(expr-2). Bits shifted off the left end (SHL) or the right end
(SHR) are shifted into the CARRY; zeros are shifted in the other
end. The previous value of CARRY is always lost. For example, SHL
(14011161B, 1) returns the .value 0#1110610B and sets CARRY as a
side-effect; SHR (100111615, 2) returns the wvalue #6100111B, and
clears CARRY as a side-effect. :

Important restriction: expr-2 must be non-zero.

16.5 Interrupt Control Statements

Two special statements are provided for control of the 8084
interrupt facility: ENABLE and DISABLE. Their functions and usage
are explained in some detail in section 18 of this manual, and soO
will not be repeated here. PL/M for the 8808 does not support these

PL/M PROGRAMMING PAGE 53
Predeclared Variables and Procedures

statements.

16.6 Carry, 2ero, Sign, Parity

There are *four identifiers used to test the 8008 and 8888 CPU
condition codes:

CARRY ZERO SIGN PARITY

An occurence of one of these identifiers (in an expression)
generates a test of the corresponding condition flip-flop. 1If the
flip-flop is set (= 1), a wvalue of @FFH 1is returned; if the
flip-flop is clear (= B), a value of @ is returned.

16.7 The Decimal Arithmetic Function

A pre-declared function called DEC facilitates computations in
BCD (binary-coded-decimal) numbers. This pre-declared DEC function
is described 1in the section of this manual covering decimal
arithmetic, section 17. PL/M for the 8008 does not support this
facility.

16.8 The MEMORY Vector

Often it is useful to reference the area of free memory that
follows the space allocated to variables. This facility is provided
by an implicit declaration

DECLARE MEMORY (@) BYTE;
as the last declaration of every program.

As an example, consider the following program: assuming 10
memory pages of 256 bytes each, we want to leave all unallocated

memory set to ones.

DECLARE SIZE LITERALLY “2559°7;
DECLARE I ADDRESS:
DO I = .MEMORY TO SIZE;

MEMORY (I - .MEMORY) = 1;
END;
EOF

16.9 The TIME Procedure

) The built-in procedure TIME causes a time delay specified by
1ts actual parameter. The form of the call is

PL/M PROGRAMMING PAGE 54
Predeclared vVariables and Procedures

CALL TIME (expression);

where the expression evaluates to a BYTE guantity. The 1length of
time measured by the procedure is a multiple of 100 microseconds: if
the actual parameter evaluates to n, then the delay caused by the
procedure is 1006n usec. For example, the procedure call

CALL TIME (45);

returns after 4.5 milliseconds. Since the maximum delay offered by
the procedure 1is 25.5 milliseconds, longer delays must be obtained
by repeated calls. The following loop takes one second to execute:

DO.I = 1 TO 40;
CALL TIME (250);
END;

The TIME function is based on the 868#8 and 8888 CPU cycle
times, and assumes that in your system the memory cycle time is fast
enough to permit the CPU to run full speed. If this condition
fails, or if the CPU goes into a "hold state during execution of
the TIME function, then delay times become unpredictable.

16.18 STACKPTR

The Intel 8880 (unlike the 8688) has a run-time pushdown stack
in memory, rather than in the CPU itself. The 8080 references this
memory stack by means of a stackpointer register in the CPU, - which
always contains the memory address of the (current) top item on the
stack. 8088 PL/M gives the programmer direct access to this
register by means of the pseudovariable STACKPTR, which may be used
in the two following constructions only:

STACKPTR;
expression;

variable
STACKPTR

(“variable’ means non-subscripted PL/M variable; ‘expression’ means
any PL/M expression.)

A PL/M programmer should require access to the stack pointer
only under extreme and unusual- circumstances. Taking control of the
stack away from the compiler frustrates the compile-time checks on
stack overflow, 1invalidates the compiler’s assumptions about the
run-time states of the stack, and results 1in unreliable programs.
If such action seems necessary nontheless, programmers are advised
to study the 8688 PL/M run-time environment, before making use of
STACKPTR. The necessary documentation will be found in the
appropriate compiler manual.

PL/M PROGRAMMING PAGE 55
Decimal Arithmetic

17. DECIMAL ARITHMETIC FACILITIES

8080 PL/M has operations which greatly simplify decimal
arithmetic, providing some straightforward conventions are followed.
Let all operands (variables and constants) be BYTE values, each
containing two 4-bit fields. Each field will represent one decimal
digit by a binary number in the range @ - 9. Such a BYTE value will
be <called a BCD-pair. (The representation of a number as a string
of decimal digits, where each digit is represented by a 4-bit binary
number, 1s called BINARY-CODED-DECIMAL representation.) In an 8080
BCD-pair, the least significant (rightmost) 4-bit field represents
the least significant decimal digit of the pair. We will write a
BCD-pair as a PL/M hexadecimal number, because each hexadecimal
digit will conveniently represent a 4-bit BCD digit. Here are some
valid BCD-pairs:

23H 96H 10H
and here are some invalid BCD-pairs:
2FH @AQH 770 31

BCD-pairs are added using the + or PLUS operators, and then the
result is made into a BCD-pair again by means of the DEC function.
The form of a call to DEC is one of the following:

DEC (el + e2)
DEC (el PLUS e2)

where el and e2 are BCD-pair values: non-subscripted BYTE variables,
BCD-pair constants, or expressions resulting in BCD-pair values,
such as properly nested calls to DEC. The effect of a call on DEC
in one of the above forms, is to return the BCD-pair representing
the BCD sum of el and e2, including the possible carry from the
low-order to the high-order digit of the pair. If the sum exceeds
99H, the 8080 carry flip-flop is set. Some examples will clarify
these definitions. 1In the table below, the calls to DEC on the left
produce the corresponding results on the right:

DEC (22H + 22H) 44H, CARRY=clear
DEC (36H + 36H) 72H, CARRY=clear
DEC (73H + 81H) . 54H, CARRY=set

DEC (DEC(22H+22H) + 33H) 77H, CARRY=clear
DEC (DEC(22H+22H)+DEC(22H+22H)) 88H, CARRY=clear

The operator PLUS can be used in place of the operator + if
decimal numbers with more than two digits must be added. For
example, to add 1234 and 4678, we first add the low-order BCD-pairs
34H and 78H, then the high-order BCD-pairs 12H and 46H, taking
account of the carry from the low-order pair to the high-order pair.
In PL/M, we have

PL/M PROGRAMMING PAGE 56
Decimal Arithmetic

DECLARE (UPPER, LOWER) BYTE;
LOWER = DEC (34H + 78H);
UPPER = DEC (12H PLUS 46H);

The low-order result 12H is now in LOWER, the high-order 59H in
UPPER. It ~was important not to disturb the 8080 carry flip-flop
between the two calls to DEC, so that the PLUS operator was not
misled. This can be assured in general by permitting only scalar
assignments to separate the calls.

Here is another example: suppose we wish to obtain the sum of
two decimal numbers, each 6 digits in length. One number is stored
in the three BYTE variables X1, X2, X3; the other is stored in the
three BYTE variables Y1, Y2, Y3. We want the result to appear in
Z1, 22, 23. We write this program:

DECLARE (X1, X2, X3) BYTE,
(Y1, Y2, Y3) BYTE,
(z21, 22, 23) BYTE;

23 = DEC (X3 + Y3); /* LOW-ORDER RESULT */
22 = DEC (X2 PLUS Y2); /* MIDDLE-ORDER RESULT */
Zl = DEC (X1 PLUS Y1); /* HIGH-ORDER RESULT x/

Now we generalize to a procedure which sums two numbers, each
represented by a vector of BCD-pairs (X and Y), and leaves the
result in the vector 2. The digits of each number are assumed to be
stored such that the 1least significant BCD-pair is at subscript
position zero.

DECLARE (I, CY) BYTE,
(X, ¥, 2) (190) BYTE, (U, V, W) BYTE;

CY = 0;
DO I= @ TO LAST(X):;
U = X(I);
V = Y(I);
W = DEC (U + CY);
CY = CARRY;
W = DEC (W + V);
CY = (CY OR CARRY) AND 1;
Z(I) = W;
END:

No direct facility is provided by 8p8@ PL/M for decimal
arithmetic other than addition. Subtraction is easily accomplished
by complement arithmetic: given a BCD-pair X, the value

99H - X

is the nines-complement of X. Subtraction of a number is
accomplished by adding its nines-complement. Decimal multiplication
and division can be done by repeated addition and subtraction, using
shift-and-add or shift-and-subtract algorithms if the application

PL/M PROGRAMMING PAGE 57
Decimal Arithmetic

warrants. Unpacked decimal (one digit per byte) is always an option
if BCD-pair operations become too involved.

PL/M PROGRAMMING PAGE 58
Interrupt Processing

18. INTERRUPT PROCESSING FACILITIES

8080 PL/M includes language facilities for use with the 8080
interrupt mechanism to process interrupts generated externally.
Fundamentally, an interrupt is an external asynchronous <call on a
PL/M procedure. When the interrupt 1is accevted, the executing
process is stopped, the machine state 1is seved, and a specific
interrupt-handling procedure is invoked,. When the interrupt
procedure does a return, the previous machine state is restored and
control returns to the interrupted process.

Up to 8 different interrupt procedures can be included 1in a
PL/M program, corresponding to the 8 restart instructions RST @
through RST 7.

The 8080 interrupt mechanism 1is controlled by the PL/M
Statements

DISABLE;
ENABLE;

The DISABLE statement causes the 8088 CPU to enter a state wherein
interrupts are masked. The ENABLE statement causes the 8080 to
leave that state, so that incoming interrupts are processed as they
occur. The 8080 CPU starts from power-up with interrupts disabled;
interrupts must be explicitly enabled before any interrupt
procedures can be invoked.

An interrupt procedure in 8888 PL/M 1is a parameterless and
typeless procedure, with the INTERRRUPT attribute in its
declaration. The form of this attribute is

INTERRUPT n

where n is a number in the range @ to 7, corresponding to one of the
eight possible interrupts. Interrupt procedures must be declared
only in the outermost block of a program.

For example, the following interrupt procedure 1is invoked
whenever a RST 3 instruction is jammed into the 808@ interrupt port
with interrupts enabled.

PL/M PROGRAMMING PAGE 59
Interrupt Processing

DECLARE KEYMAX LITERALLY “72°;
DECLARE KEYBUFF (KEYMAX) BYTE, KEYPTR BYTE;
DECLARE OVERFLOW LABEL;

KEYBOARDSPROCESS: PROCEDURE INTERRUPT 3;
DECLARE CHAR BYTE;
KEYPTR = KEYPTR+1;
IF KEYPTR > KEYMAX THEN GO TO OVERFLOW;
IF (CHAR := INPUT(5)) = “$° THEN RETURN;
KEYBUFF (KEYPTR) = CHAR;

END KEYBOARDSPROCESS:

KEYPTR = . (KEYBUFF);
ENABLE;
/* MAIN PROGRAM */

OVERFLOW: .
/* KEYBOARD BUFFER OVERFLOW */

EOF

In this example, KEYBOARDPROCESS operates on the global
variables KEYPTR and KEYBUFF each time RST 3 is executed. If KEYPTR
exceeds KEYMAX then control is transferred to the outer block 1label
OVERFLOW and the saved machine state is discarded -- control never
returns to the interrupted process. If KEYPTR does not exceed
KEYMAX then the value of input port 5 is read and stored into CHAR.
If the value of CHAR is ASCII dollar sign, then the interrupt
procedure returns immediately to the interrupted process. Otherwise
the value of CHAR is placed 1in the vector KEYBUFF and control
returns to the interrupted process.

The 8080 interrupt mechanism is disabled by the occurence of an
interrupt, and may be explicitly enabled with an ENABLE statement
inside the interrupt procedure. Interrupts are enabled by a return
from an interrupt procedure. Caution should be exercised when
enabling interrupts inside an interrupt procedure: two activations
‘of the same interrupt procedure must never be in process
simultaneously, since there 1is only one data area for both
activations. This exclusion <can be accomplished by spvecifically
disabling the interrupt source, or by establishing a priority of
interrupts with external circuitry. The safest method is to leave
interrupts disabled during all interrupt processing.

Interrupt procedures may contain nested non-interrupt
procedures. On completion of a call, these nested procedures return
to their point of call inside the interrupt procedure in which they
are defined; it 1is only the RETURN s at the outermost interrupt
procedure level which cause the machine state of the interrupted
process to be restored.

PL/M PROGRAMMING PAGE 640
Interrupt Processing

Similarly, procedures at the same level, or global to a
particular interrupt procedure, can be invoked from inside the
interrupt procedure. The programmer must ensure, however, that any
data areas referenced by such a global procedure are not sensitive
to actions of the interrupt procedure. For example, it would be
dangerous to do floating point multiplications or divisions inside
an interrupt procedure, because such multiply and divide procedures
would almost certainly have local variables. If an interrupt comes
during a multiply, and the interrupt procedure re-enters the
multiply code, these local data areas will be corrupted. The
interrupt procedure will complete its execution correctly, but the
return from the interrupt will not be able to restore the original
machine state.

Interrupt procedures can be called directly from the outer
block of the program, or from another procedure, if desired. The
programmer must be aware, of course, that interrupts are always
enabled on exit from an interrupt procedure, even though the
procedure may have been entered via a call rather than an external
interrupt.

Note also that an 888¢ in the halt state with interrupts
disabled cannot be restarted except by applying the appropriate
reset to the 8888 chip. This is why the HALT statement in PL/M
enables the interrupt mechanism immediately before stopping the CPU.

PL/M PROGRAMMING PAGE 61
Appendix A, Grammar of the PL/M Language

T HE VOCABULARY

terminal symbols nonterminals

1 ! <{program>

2 : <statement list>

3 HALT <statement>

4 ENABLE <basic statement>
5 DISABLE <if statement>

6 IF <assignment>

7 THEN <group>

8 ELSE <procedure definition>
9 DO <return statement>
19 CASE <call statement>

11 INTERRUPT

12 <number>

13 PROCEDURE

14 <identifier>

<go to statement>
<declaration statement>
<label definition>

<if clause>

15) <true part>

16 ({expression>

17 ' <group head>

18 END <ending>

19 : <step definition>
29 RETURN <while clause>

21 CALL <case selector>

22 GO <variable>

23 TO <replace>

24 GOTO <iteration control>
25 DECLARE <to>

26 LITERALLY <by>

27 . <string> <while>

28 DATA <procedure head>

29 BYTE <procedure name>

39 ADDRESS <type>

31 LABEL <parameter list>

32 BASED <parameter head>

33 INITIAL <go to>

34 = <declaration element>
35 := <type declaration>
36 OR <data list>

37 XOR <data head>

38 AND <constant>

39 NOT <identifier specification>
40 < <bound head>

41 > <initial list>

42 + <variable name>

43 - <identifier list>
44 PLUS <based variable>

45 MINUS <initial head>

46 * <left part>

47 / <logical expression>
48 MOD <logical factor>

PL/M PROGRAMMING PAGE 62
Appendix A, Grammar of the PL/M Language

49 . <logical secondary>

50 BY <logical primary>

51 WHILE <arithmetic expression>
52 <relation>

53 <comp>

54 <term>

55 <primary>

56 <constant head>

57 <subscript head>

<program> is the goal symbol.

PL/M PROGRAMMING PAGE 63
Appendix A, Grammar of the PL/M Language

T H E PRODUCTTIONS

<program> ::= <statement list>

<statemen$§ list> ::= <statement>
<{statement list> <statement>

<statement> ::= <basic statement>
! <if statement>

<assignment> ;

<group> ;

<procedure definition> ;
<return statement> ;
<call statement> ;

<go to statement> ;
<declaration statement> ;
HALT ;

ENARLE ;

DISABLE ;

<basic statement> ::

-t S b b bom bm s e s]

<label definition> <basic statement>

<if clause> <statement>
<if clause> <true part> <statement>
<label definition> <if statement>

<if statement>

<if clause> ::= IF <expression> THEN
<true part> ::= <basic statement> ELSE
{group> ::= <group head> <ending>

<group head> :: DO ;

DO <step definition> ;
DO <while clause> ;

DO <case selector> ;

<group head> <statement>

—— v o=]

<step definition> ::= <variable> <replace> <expression> <iteration control>

<iteration control> ::= <to> <expression>
! <to> <expression> <by> <expression>

<while clause> ::= <while> <expression>
<case selector> ::= CASE <expression>

<procedure definition> ::= <procedure head> <statement list> <ending>

PL/M PROGRAMMING
Appendix A, Grammar

35 <procedure

49 <procedute
41 <parameter

42 <parameter

44 <ending> :

47 <label defi

{return sta

of the PL/M Language

head> <procedure
<procedure
<procedure
<procedure

<procedure

name>

list>

head> (

= END
! END <identifier>
]

name>
name>
name>
name>
name>

PAGE 64

H
<{type> ;
<parameter list> ;

<parameter list> <type>

INTERRUPT <number>

<label definition> PROCEDURE

<parameter head> <identifier>)

<parameter head> <identifier> ,

<label definition> <ending>

nition> ::=
§ <number>

tement> ::= RETURN
!

<identifier> :

RETURN <expression>

[

.
’

DECLARE <declaration element)>

<declaration statement>

’

<declaration element)

<identifier> LITERALLY <string>

<identifier> <data list>

51 <call statement> ::= CALL <variable>
52 <go to statement> ::= <go to> <identifier>
53 ! <go to> <number>
54 <go to> ::= GO TO
55 ! GOTO
56 <declaration statement)> ::=
57 !
58 <declaration element> ::= <type declaration>
59 !
60 !
61 <data list> ::= <data head> <constant>)
62 <data head> ::= DATA (
" 63 ! <data head> <constant> ,
64 <type declaration> ::=
65 !
66 !
67 {type> ::= BYTE
68 ! ADDRESS
69 ! LABEL
70 <bound head> ::= <identifier specification> (

<identifier specification> <type>
<bound head> <number>) <type>
<type declaration> <initial list>

PL/M PROGRAMMING PAGE 65
aAppendix A, Grammar of the PL/M Language

71 <identifier specification> ::= <variable name>

72 . ! <identifier list> <variable named>)
73 <identifier 1list> ::= (

74 ! <identifier list> <variable name> ,

75 <variable name> ::= <identifier>

76 . ! <based variable> <identifier>

77 <based variable> ::= <identifier> BASED

78 <initial list> ::= <initial head> <constant>)

79 <initial head> = INITIAL (

80 ! <initial head> <constant> ,

81 <assignment> ::= <variable> <replace> <expression>
82 ! <left part> <assignment>

83 {replace> ::= =

84 <left part> ::= <variable> ,
85 <expression> ::= <logical expression>
86 ! <variable> := <logical expression>

87 <logical expression> ::= <logical factor>
88 ! <logical expression> OR <logical factor>
[

89 <logical expression> XOR <logical factor>
90 <logical factor> ::= <logical secondary>
91 ! <logical factor> AND <logical secondary>

92 <logical secondary> :: <logical primary>

93 NOT <logical primary>

94 <logical primary> ::= <arithmetic expression>

95 ! <arithmetic expression> <relation> <arithmetic expression>
96 <relation> ::= =

97 ! <

98 ! >

99 ! <comp>

1090 <comp> = < >

181 ! < =
192 ! > =
183 <arithmetic expression> ::= <termd>

104 ! <arithmetic expression> + <term>
145 ! <arithmetic expression> ~ <termd>

196 ! <arithmetic expression> PLUS <term>
167 ! <arithmetic expression> MINUS <term>

PL/M PROGRAMMING
Appendix A, Grammar of the PL/M Language

108

109
110
111
112

113
114
115
116
117
118

119
129

121
122

123
124

125
126

127
128

129

<term> T

<primary> =
!
!
1
1
]
<constant head>

<variable> ::=
1

PAGE 66

! - <term>

<primary>

<term> * <primary>
<term> / <primary>
<term> MOD <primary>

<constant>

. <constant>

<constant head> <constant>)
<variable>

. <variable>

{ <expression>)

1:= .
I

<constant head> <constant> ,

<identifier>
<subscript head> <expression>)

<subscript head> ::= <identifier> (
! <subscript head> <expression>
<constant> ::= <string>
! <number>
<to> ::= TO
<by> ::= BY
<while> := WHILE

PL/M PROGRAMMING PAGE 67
APPENDIX B, ASCII codes

The ASCII (American Standard Code for Information Interchange)
was adopted by the American National Standards Institute, Inc.
(ANSI) in 1968. The standard itself, as distinct from the summary
here presented, is available from ANSI, 1430 Broadway, New York, NY
10018, as USAS X3.4-1968. A previous version of this standard was
adopted by the,National Bureau of Standards as a Federal Information
Processing Standard (FIPS 1). ASCII is a seven-bit code, which we
are representing here by a pair of hexadecimal digits.

.

g8 NUL 26 SP 49 @ 60

g1 SOH 21 ! 41 A 61 a

g2 STX 22 " 42 B 62 b

3 ETX 23 % 43 C 63 c

g4 EOT 24 §$ 44 D 64 d

85 ENQ 25 % 45 E 65 e

@6 ACK 26 & 46 F 66 f

@7 BEL 27 ° 47 G 67 g

@8 BS 28 48 H 68 h

g9 HT 29) 49 I 69 i

gA LF 26 * 4a J 6A J

gB VT 2B + 4B K 6B k

g8C FF 2C 4C L 6C 1

@D CR 2D - 4D M 6D m

AE SO 2E . 4E N 6E n

gF S1I 2F / 4F O 6F o

19 DLE 309 @ 50 P 70 p

11 DC1 31 1 51 ¢Q 71 g

12 DC2 32 2 52 R 72

13 DC3 33 3 53 S 73 s

14 DC4 34 4 54 T 74 t

15 NAK 35 5 5 U 75 u

16 SYN 36 6 56 V 76 v

17 ETB 37 7 57 W 77 W

18 CAN 38 8 58 X 78 X

19 EM 39 9 59 Y 79 vy

1A SUB 3A 5A 2 TA =z

1B ESC 3B ; 5B [7B | (braces)
-1C FS 3¢ < 5C \ 7C | (bar)
1D GS 3D = 5D] 7D] (braces)
1E RS 3E > 5 ° 7E (tilde)

1F US 3F 5F ' 7F DEL

PL/M PROGRAMMING
Appendix C, PL/M Special Characters

SYMBOL

~

ANV ANV A *
v

~ ws e

NAME
dollar sign
equal sign

assign
dot
slash

left paren
right paren

plus

minus
apostrophe
asterisk

less than
greater than
less or equal
greater or egual
not equal
colon
semicolon
comma

PAGE

USE

compiler toggles,

number and identifier spacer
relational test operator,
assignment operator
imbedded assignment operator
address operator

division operator

left comment delimiter
right comment delimiter
left delimiter of lists,
subscripts, and expressions
right delimiter of lists,
subscripts, and expressions
addition operator
subtraction operator

string delimiter
multiplication operator
relational test operator
relational test operator
relational test operator
relational test operator
relational test operator
label delimiter

statement delimiter

list element delimiter

68

PL/M PROGRAMMING PAGE 69
Appendix D, PL/M Reserved Words

RESERVED WORD USE

IF
THEN
ELSE

DO
PROCEDURE
INTERRUPT
. END

DECLARE
BYTE
ADDRESS
LABEL
INITIAL
DATA
LITERALLY
BASED

GO
TO

BY
GOTO
CASE
WHILE

CALL
RETURN
HALT
ENABLE
DISABLE

OR

AND
XOR
NOT

MOD
PLUS
© MINUS

EQOF

i
}

conditional tests and alternative execution

statement grouping and procedure definition

data declarations

unconditional branching and loop control

procedure call
procedure return
machine stop
interrupt enable
interrupt disable

boolean operators

remainder after division
add with carry
subtract with borrow

end of input file (compiler control)

PL/M PROGRAMMING PAGE 70
Appendix E, PL/M Pre-declared Identifiers

CARRY
DEC
DOUBLE
HIGH
INPUT
LAST
LENGTH
LOW
MEMORY
OUTPUT
PARITY
ROL
ROR
SCL
SCR
SHL
SHR
SIGN
STACKPTR
TIME
ZERO

	PLM_ProgM_0001.tif
	PLM_ProgM_0002.tif
	PLM_ProgM_0003.tif
	PLM_ProgM_0004.tif
	PLM_ProgM_0005.tif
	PLM_ProgM_0006.tif
	PLM_ProgM_0007.tif
	PLM_ProgM_0008.tif
	PLM_ProgM_0009.tif
	PLM_ProgM_0010.tif
	PLM_ProgM_0011.tif
	PLM_ProgM_0012.tif
	PLM_ProgM_0013.tif
	PLM_ProgM_0014.tif
	PLM_ProgM_0015.tif
	PLM_ProgM_0016.tif
	PLM_ProgM_0017.tif
	PLM_ProgM_0018.tif
	PLM_ProgM_0019.tif
	PLM_ProgM_0020.tif
	PLM_ProgM_0021.tif
	PLM_ProgM_0022.tif
	PLM_ProgM_0023.tif
	PLM_ProgM_0024.tif
	PLM_ProgM_0025.tif
	PLM_ProgM_0026.tif
	PLM_ProgM_0027.tif
	PLM_ProgM_0028.tif
	PLM_ProgM_0029.tif
	PLM_ProgM_0030.tif
	PLM_ProgM_0031.tif
	PLM_ProgM_0032.tif
	PLM_ProgM_0033.tif
	PLM_ProgM_0034.tif
	PLM_ProgM_0035.tif
	PLM_ProgM_0036.tif
	PLM_ProgM_0037.tif
	PLM_ProgM_0038.tif
	PLM_ProgM_0039.tif
	PLM_ProgM_0040.tif
	PLM_ProgM_0041.tif
	PLM_ProgM_0042.tif
	PLM_ProgM_0043.tif
	PLM_ProgM_0044.tif
	PLM_ProgM_0045.tif
	PLM_ProgM_0046.tif
	PLM_ProgM_0047.tif
	PLM_ProgM_0048.tif
	PLM_ProgM_0049.tif
	PLM_ProgM_0050.tif
	PLM_ProgM_0051.tif
	PLM_ProgM_0052.tif
	PLM_ProgM_0053.tif
	PLM_ProgM_0054.tif
	PLM_ProgM_0055.tif
	PLM_ProgM_0056.tif
	PLM_ProgM_0057.tif
	PLM_ProgM_0058.tif
	PLM_ProgM_0059.tif
	PLM_ProgM_0060.tif
	PLM_ProgM_0061.tif
	PLM_ProgM_0062.tif
	PLM_ProgM_0063.tif
	PLM_ProgM_0064.tif
	PLM_ProgM_0065.tif
	PLM_ProgM_0066.tif
	PLM_ProgM_0067.tif
	PLM_ProgM_0068.tif
	PLM_ProgM_0069.tif
	PLM_ProgM_0070.tif

